107. Stereoselektive Alkylierung an $C(\alpha)$ von Serin, Glycerinsäure, Threonin und Weinsäure über heterocyclische Enolate mit exocyclischer Doppelbindung¹)²)

von Dieter Seebach*, Johannes D. Aebi3), Marlyse Gander-Coquoz4) und Reto Naef5)

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Universitätstr. 16, CH-8092 Zürich

(10.IV.87)

Stereoselective Alkylation at C(α) of Serine, Glyceric Acid, Threonine, and Tartaric Acid Involving Heterocyclic Enolates with Exocyclic Double Bonds

The chiral, non-racemic title acids are converted to methyl dioxolane- (cf. 13), oxazoline- (4) and oxazolidinecarboxylates (cf. 9). Deprotonation by Li(i-Pr)₂N at dry-ice temperature gives solutions of the lithium enolates A-D with exocyclic enolate double bonds. These are stable enough with respect to β -elimination (Scheme 1) to be alkylated with or without cosolvents such as HMPA or DMPU. The products are formed in good to excellent yields and, with the exception of the tartrate-derived acetonide (see Scheme 2), with diastereoselectivities above 90%. While the tartrate- and threonine-derived enolates (A and B, resp.) are chiral due to the second stereogenic center of the precursors, the serine- and glyceric-acid-derived enolates are non-racemic due to a *tert* butyl-substituted (pivalaldehyde-derived) acetal center (C and D, resp.). The products of alkylation can be hydrolyzed to give α -branched tartaric acid (Scheme 2), allothreonine (Scheme 3), serine (Scheme 4), and glyceric-acid derivatives (Scheme 5) with quaternary stereogenic centers. The configurations of the products are determined by NOE-NMR measurements and by chemical correlation. These show that the dioxolane-derived enolates A and D are alkylated preferentially from that face of the ring which is already substituted (*syn'*-attack), while the dihydrooxazol- and oxazolidine-derived enolates B and C are alkylated from the opposite face (*'anti'*-attack). The *'syn'*-attack is postulated to arise from strong folding of the heterocyclic ring due to electronic repulsion between the enolate π -system and non-bonding electron pairs on the heteroatoms (see Scheme 6).

A) Einleitung. – Enolate mit Abgangsgruppen in γ -Stellung zum O-Atom, also in Allyl-Position zur Enolat-Doppelbindung, sind gewöhnlich nicht stabil, es tritt Elimination unter Bildung eines α,β -ungesättigten Carbonyl-Derivates ein (vgl. Aldol \rightarrow Enon). Man kann verschiedene Effekte nutzen, um diese Elimination zu unterdrücken⁶), z. B. die Einbindung der Abgangsgruppe in einen Ring, so dass die zu lösende σ -(C-X)-Bindung in die Ebene des π -Systems zu liegen kommt⁷) [10] [11]. Für heterocyclische Carbonsäure-

¹) Zugehörige Kurzmitteilungen: [1] (Weinsäure) [2] (Threonin) [3] (Serin) [4] (Glycerinsäure).

²) Siehe auch die Diskussionen in den vor kurzem erschienenen Übersichtsartikeln [5] [6].

a) Dissertation ETH Nr. 7866, Zürich, 1985. b) Adresse ab 1.9.87: F. Hoffmann-La Roche & Co. AG, Abt. Pharmaforschung, CH-4002 Basel.

⁴) Teil der geplanten Dissertation von *M*.G.-C., ETH Zürich.

⁵) a) Dissertation ETH Nr. 7442, Zürich, 1983. b) Derzeitige Adresse von R. N.: Sandoz AG, Präklinische Forschung, CH-4002 Basel.

⁶) Für eine allgemeine Diskussion s. [7].

⁷) Siehe auch die 'Spielregeln' für die sogenannte Fragmentierungsreaktion: $A-B-C-D-X \rightarrow A=B+C=D+X$ [8], Übersichtsartikel [9].

ester-enolate ist dies in Schema 1 dargestellt. Im Rahmen unserer Arbeiten über die Herstellung vielseitig anwendbarer, chiraler Synthese-Bausteine aus leicht zugänglichen enantiomerenreinen Vorläufern wie Hydroxy- und Aminosäuren ('chiral pool' [5] [12] [13]) wandten wir uns schon vor über zehn Jahren der Frage zu, ob man über derartige Enolate ohne Racemisierung quartäre, funktionalisierte Zentren aufbauen kann⁸). Wir beschreiben hier die Erzeugung und Umsetzungen von Enolaten des in Schema 1 gezeigten Typs – ohne Beweis zeichnen wir die Enolate hier und im folgenden mit (E)-Konfiguration der Doppelbindung⁹) – zur Verzweigung von Serin, Glycerinsäure, Threonin und Weinsäure in α -Stellung zur Carboxyl-Gruppe¹)²)¹⁰).

B) Weinsäure. – Die ersten Versuche, das Acetonid von Weinsäureester mit Lithiumdiisopropylamid (Li(i-Pr)₂N) zum Enolat A (*Schema 2*) zu deprotonieren und zu methylieren, führten zu einem nur teilweise auftrennbaren Gemisch [18] von diastereoisomeren einfach und doppelt methylierten Dioxolanen¹¹) und der beiden Produkte der Addition des Enolates A an Aceton (siehe das bicyclische Lacton und den Hydroxydiester in *Schema 2*)¹²) – mit einer verwirrenden Vielzahl von CH₃-Signalen in den NMR-Spektren! Offensichtlich sind die Geschwindigkeiten, mit denen das Enolat unter Bildung von Aceton zerfällt und mit CH₃I reagiert, vergleichbar. Durch langsame Zugabe einer Li(i-Pr)₂N-Lösung zur Mischung aus dem Weinsäure-acetonid, einem *reaktiven* Alkylierungsmittel wie Allyl- oder Benzylbromid, THF und Hexamethylphosphortriamid (HMPT)¹³) bei Trockeneistemperatur und allmähliches Aufwärmen erhielt man dagegen die in *Schema 2* gezeigten Produkte in vernünftigen Ausbeuten und Diastereoselektivitäten. In jedem Fall wurden analysenreine Gemische des *l*- und *u*-Isomeren¹⁴) isoliert und

⁸) Eine Diskussion der Problematik des stereoselektiven Aufbaus von quartären Zentren findet sich in einer umfassenden Übersicht von *Martin* [14].

⁹) Es ist bisher in keinem Fall gelungen, Einkristalle von irgendeinem unserer heterocyclischen Lithium-enolate [5] [6] zu züchten, die für eine Röntgenstrukturanalyse geeignet gewesen wären. Strukturen anderer Li-Verbindungen siehe [15] [16].

¹⁰) Einige Umsetzungen mit Nitroolefinen sind schon beschrieben worden [17].

¹¹) Das Methylierungsprodukt mit *trans*-ständigen Ester-Gruppen überwog (1/2 (R = CH₃) 86:14). In Gegenwart von Hexamethylphosphortriamid (HMPT) konnte der Zerfall des Enolats A teilweise unterdrückt werden; das in 50% Ausbeute isolierte Gemisch aus Edukt (6%), Monomethyl-(79%) und Dimethyl-Derivat (15%) war chromatographisch nicht trennbar, die Analyse erfolgte durch GC/MS.

¹²) Eine Umsetzung des in THF/HMPT 8:2 erzeugten Enolates A mit Aceton ergab 60% eines (1:4)-Gemisches von Lacton und Hydroxydiester. Kristallisation aus Et₂O/Hexan lieferte das reine Lacton als kristalline Substanz und den Hydroxydiester als Flüssigkeit (Sdp. 100°/10⁻³ Torr, Kugelrohr). Beide sind optisch aktiv, aber von unbekanntem Enantiomerenüberschuss (% ee). Charakterisierung *Fussnote 5a*.

¹³) Statt HMPT, das wegen seiner carcinogenen und mutagenen Eigenschaften als Lösungsmittel möglichst gemieden werden sollte, kann man auch im vorliegenden Fall das harmlose [19] 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinon (Dimethylpropylenurea=DMPU) einsetzen [20].

¹⁴) Das *l*-Produkt [21] ist ein Derivat der *threo*-konfigurierten alkylierten Weinsäure, das *u*-Produkt leitet sich vom entsprechenden *erythro*-Weinsäure-Derivat ab.

spektroskopisch charakterisiert, aber nur 1e und 2e wurden durch HPLC voneinander getrennt¹⁵)¹⁶).

Die Konfigurationszuordnung erfolgte durch ¹H-NMR-Spektroskopie und chemische Korrelation. So ist eindeutig der *trans*-Dicarbonsäureester 1 das Hauptprodukt der Enolat-Hydrolyse (vgl. das Deuterolyse-Produkt 1f). Das *cis* zur Ester-Gruppe stehende H-C(5) der Hauptprodukte 1a-e erscheint im ¹H-NMR-Spektrum bei tieferem Feld (Mittelwert 4,93 ppm) als das *cis* zur neu eingeführten R-Gruppe stehende der Nebenisomeren 2a-e (4,37 ppm)¹⁷). ¹H-NMR-Messungen an den beiden getrennten Isomeren 1e und 2e (R = p-Methoxybenzyl) in Gegenwart des chiralen Verschiebungsreagenz

¹⁵) Im Exper. Teil sind nur diese beiden Produkte beschrieben; Charakterisierung der Gemisch-Komponenten in den anderen Fällen s. Fussnote 5a.

¹⁶) Mit Iodoäthan, 1-Iodo-2-methylpropan, Chlorodimethylether, Dimethyl(methyliden)ammonium-chlorid und Benzophenon wurden keine Alkylierungsprodukte gebildet. Auch andere Ester (z. B. Diisopropyl) und andere Acetale (z. B. des Pivalaldehyds) der Weinsäure ergaben keine besseren Resultate.

¹⁷) Dies gilt auch für das Monomethylierungsprodukt (s. zweite Zeile von *Schema 2*: H-C(5) des Hauptprodukts bei 4,83, des Nebenprodukts bei 4,36 ppm). Im Edukt-Acetonid liegen H-C(4)/H-C(5) bei 4,82 ppm.

 $[Eu(tfc)_3]^{18}$ zeigten, dass das Hauptisomer 1e zu 3% durch das Enantiomere verunreinigt war, während das Nebenprodukt 2e als racemisches Gemisch vorlag¹⁹). Das (4:1)-Gemisch 1e/2e wurde säurekatalysiert zu den Dihydroxy-dicarbonsäureestern hydrolysiert. Die Nebenkomponente (durch HPLC abgetrennt) erwies sich durch Vergleich mit einer authentischen Probe²⁰) als weitgehend racemisiertes (*ca.* 7% ee) (4'-*O*-Methyl-dimethylester)-Derivat der *u*-konfigurierten Piscidinsäure [22], die Hauptkomponente 3 (durch Kristallisation isoliert) muss also die *l*-Konfiguration besitzen (s. *Schema 2*). Die somit auch durch Korrelation bewiesene bevorzugte Alkylierung des Enolats A von der Seite, auf welcher die Ester-Gruppe steht (rel. Topizität *ul*) wird im Diskussionsteil kommentiert werden.

C) Threonin. – Zur Alkylierung an $C(\alpha)$ von Threonin wurde dieses nach bekannten Methoden unter Retention [23] [24] oder unter Inversion [25] in die Dihydrooxazole trans - bzw. cis-4 überführt²¹). Diese liessen sich mit Li(i-Pr)₂N leicht zu den enantiomeren Enolaten (R)- und (S)-B (unbekannter Konfiguration an der Doppelbindung⁹)) deprotonieren²²)²³) und so C-alkylieren. Es entstanden in sehr guten Ausbeuten und mit hoher Selektivität die in 4-Stellung geminal disubstituierten Dihydrooxazole 5. Alle in Schema 3 angegebenen Ausbeuten beziehen sich auf analysenreines Material; bei Selektivitätsangaben > 98 und > 95% war durch GC- bzw. ¹³C-NMR-Analyse das zweite Diastereoisomere im Rohprodukt nicht nachweisbar. Zugabe von HMPT oder DMPU war bei den weniger reaktiven Alkylhalogeniden nötig, um die angegebenen Ausbeuten zu erreichen, d.h. um die konkurrierende β -Elimination zu 2-(Benzoylamino)crotonsäure-methylester²⁴) zu unterdrücken. Nur bei Additionen an Aldehyde fielen die Diastereoselektivitäten unter 90%. Um festzulegen, an welchem der beiden neu gebildeten stereogenen Zentren die zwei mit Benzaldehyd erhaltenen Produkte epimer sind, wurde das Rohprodukt 5j nach Swern oxidiert; dies lieferte das auch durch direkte Benzoylierung gebildete diastereoisomerenreine Keton 5k, was zeigt, dass die enantiotopen Seiten des Benzaldehyds nicht sauber differenziert wurden. Änderung der Reaktionsbedingungen²⁵) führte zu keiner Verbesserung der Diastereoselektivität.

- ¹⁸) Tris(3-trifluoracetyl-d-camphorato)europium(III) (Fluka AG, Buchs, Schweiz) wurde direkt eingesetzt.
- ¹⁹) Dies könnte daher rühren, dass sich die Stereoisomeren **2** über die achiralen Dienolate bilden.
- ²⁰) Wir danken Herrn Prof. Dr. Ch. Tamm von der Universität Basel herzlich für die Probe des 4'-O-Methylpiscidinsäure-dimethylesters [22], welcher bezüglich IR- und NMR-Spektren sowie Schmp. und [α]_D mit unseren Proben verglichen wurde.
- ²¹) Versuche, den N-Formylthreonin-ethylester dreifach zu deprotonieren, führten auch zu α-alkylierten Produkten, aber mit schlechter Selektivität und niedriger Ausbeute (s. Fussnote 3a). Das N-formylierte Acetonid von Threonin-ester ((4S,5R)-3-Formyl-2,2,5-trimethyloxazolidin-4-carbonsäure-methylester) liess sich zwar in guter Ausbeute alkylieren, aber nur mit einer Diastereoselektivität von maximal 70% (s. Fussnote 3a), s. Diskussion in Kap. F, (S)-B' in Schema 6.
- ²²) Auch racemische (u)-2-Amino-3-hydroxy-3-phenylpropionsäure (= threo-3-Phenylserin) wurde mit Benzoimidsäure-methylester in das Dihydrooxazol überführt, zu einem – allerdings viel labileren – Enolat deprotoniert und mit rel. Topizität ul-1,2 methyliert und ethyliert (Fussnote 3a).
- ²³) Das achirale Enolat von 2-Phenyl-4,5-dihydrothiazol-4-carbonsäure-ester wurde schon vor über 10 Jahren erzeugt und alkyliert [26], was zeigt, dass selbst die β-Eliminierung einer in einen Fünfring eingebundenen Thiolat-Gruppe verhindert sein kann; vgl. dazu die Diskussion in [7] und [27].
- ²⁴) Laut Kapillar-GC (*Pluronic-L64*) entstanden beim Aufwärmen der bei -75° erzeugten Lösung von B bis zu den im folgenden angegebenen Temperaturen steigende Mengen eines (*E/Z*)-Gemisches des Crotonsäure-Derivates: 2% (-50°); 12% (-40°); 45% (-30°); 95% (-20°).
- ²⁵) Bei tieferer Temperatur (bis -100°) verschlechterte sich die Selektivität (auf 55% ds), längere Reaktionszeiten änderten nichts, höhere Temperaturen, *in-situ-*Durchführung der Reaktion (vgl. [27]) oder Ummetallierung zum Ti-Enolat (vgl. [28-31]) ebensowenig.

Produkt	Elektrophil (Bedingungen)	R	Ausbeute [%]	Selektivität [% ds]
ent-5a	CH ₃ COOD	D	96	
5b	Iodmethan	CH ₃	94	93
ent- 5b	Iodmethan	CH ₃	93	95
ent-5c	Iodethan	C_2H_5	66 (roh)	97
ent-5c	Iodethan (17% HMPT)	C_2H_5	94	95
5c	lodethan (25% DMPU)	C_2H_5	91	95
5d	1-Brombutan-3-methyl (17% HMPT)	$(CH_3)_2CH(CH_2)_2$	62	> 98
5e	2-Iodpropan (17% HMPT)	(CH ₃) ₂ CH	85	> 98
ent-5f	1-Brom-2-propen	$CH_2 = CH - CH_2$	96	> 98
ent-5g	Benzylbromid	C ₆ H ₅ CH ₂	93	> 98
ent-5h	Aceton	$(CH_3)_2C(OH)$	68	> 95
5i	Acetaldehyd	CH ₃ CH(OH)	97 (roh)	60
5j	Benzaldehyd	C ₆ H ₅ CH(OH)		70
ent-5j	Benzaldehyd	C ₆ H ₅ CH(OH)	91 (roh)	70
5k	Benzoylchlorid	C ₆ H ₅ CO	83	> 95
	соосна соон	соон	соон	
	$H_3C \longrightarrow NH_3^+ Cl^- H_3C \longrightarrow NH_2$	H ₂ NCH ₃ H ₃ C	NH3* 1-	
	н————————————————————————————————————	но—————н снз	СН ₂ І СН ₃	
	Me-Ester von 6-HCI 6	ent- 6	7 · HI	

Zur Konfigurationszuordnung wurde zunächst vom Methylierungsprodukt **5b** ein Differenz-NOE-Spektrum²⁶) gemessen, das mit einer *cis*-Anordnung von Ester- und CH₃-Gruppe am Fünfring vereinbar ist. Sodann wurden die beiden Enantiomeren **5b** und *ent*-**5b** durch Kochen in 6N HCl hydrolysiert und die freien Aminosäuren **6** bzw. *ent*-**6**

²⁶) Vermessung des 'Nuclear Overhauser Effect' (NOE) im ¹H-NMR-Spektrum bei Einstrahlung der CH₃-C(4) Frequenz auf H-C(5) (300-MHz-Spektrometer mit Differenz-Registrierung).

sowie nach Veresterung (CH₃OH/HCl) der Methylester von $6 \cdot$ HCl isoliert. Die (-)-drehende Form 6 wurde als 2-Methyl-D-allothreonin (= (2*R*,3*R*)-2-Amino-3-hydroxy-2methylbutansäure) identifiziert: der Chiralitätssinn an C(3) folgt aus demjenigen des eingesetzten Enolats ((*R*)-**B**), der Chiralitätssinn an C(2) aus der chemischen Korrelation²⁷) mit der Aminosäure 7 (D-Isovalin [32]). Vergleich der ¹H-NMR-Spektren der alkylierten Produkte **5b**-g legt nahe, dass alle, wie in *Schema 3* angegeben, die gleiche Konfiguration haben²⁸). Für die hydroxyalkylierten und das Benzoyl-Derivat nehmen wir in Analogie an, dass sie auch unter Angriff des Elektrophils von der der CH₃-Gruppe abgewandten Seite des Ringes enstehen (relative Topizität *ul*-1,2; vgl. auch das Phenylserin-Derivat²²)). Eine Diskussion des sterischen Verlaufs der Reaktionen folgt in *Kap. F.*

D) Serin. – Serin unterscheidet sich wesentlich von Weinsäure und Threonin, weil es nur *ein* stereogenes Zentrum enthält. Für eine stereoselektive Alkylierung an diesem Zentrum ($\rightarrow 8$ in Schema 4) muss also vorübergehend ein zusätzliches stereogenes Zen-

Produkt	Elektrophil	R	Ausbeute [%]			Selek-
			ohne Cosolvens	17% HMPT	25% DMPU	tivität [% ds]
11a	Methan(D)ol	D	71			98
116	Iodmethan	CH ₃	41	68		> 98
11c	Iodethan	C_2H_5	10	62	53	> 98
11d	1-Brom-2-propen	CH ₂ =CH-CH ₂	40	57		> 98
11e	Benzylbromid	C ₆ H ₅ CH ₂	40		52	9 7
11f	Aceton	$(CH_3)_2C(OH)$	58			> 95
11g	Benzoylchlorid	C ₆ H ₅ CO	70			> 95

²⁷) Erhitzen (160°) mit 65% Hl/rotem P im Bombenrohr ergab D-Isovalin (7) [32] (= (2R)-2-Amino-2-methylbutansäure).

²⁸) So erscheint H-C(5) im ¹H-NMR-Spektrum stets im Bereich 4,53–4,74 ppm als q. Bei den Hydroxyalkyl- und Acyl-Derivaten 5h-k liegt das Signal dieses Protons bei tieferem Feld (5,05–5,90 ppm).

trum eingeführt werden, so dass das gebildete Enolat nicht achiral und damit die Produkte racemische Gemische werden. Andererseits ist Serin für die Synthese enantiomerenreiner Verbindungen (EPC-Synthese [5] [12] [13]) ein besonders nützliches Edukt, weil die beiden oxygenierten C-Atome am stereogenen Zentrum enantiotope Äste darstellen, und so prinzipiell immer *beide* Enantiomere eines Zielmoleküls aus ein und demselben Serin-Enantiomer zugänglich sind²⁹). Als Hilfschiralitätszentrum wählten wir ein selektiv einführbares Acetal-C-Atom³⁰), siehe 9 und 10 in *Schema 4*. Serin-methylester wurde mit Pivalaldehyd unter H₂O-Abscheidung zu einem (1:1)-Gemisch von *cis*-(9a) und *trans*-Oxazolidincarbonsäureester (10a) umgesetzt³¹)³²). Zu unserer Freude ergab die Formylierung dieses Gemisches mit Ameisensäure-essigsäure-anhydrid in Et₂O bei 0° zu über 95% bevorzugt das *cis*-Derivat 9b in fast 90% Ausbeute³³)³⁴). Aus den ¹H-NMR-NOE-Spektren von Proben der beiden reinen Isomeren geht eindeutig die *cis*-Konfiguration des Hauptproduktes 9b hervor (s. *Exper. Teil*).

Behandeln des Esters **9b** mit Li(i-Pr)₂N in THF bei -75° ergab orange Enolat-Lösungen³⁵), die mit Elektrophilen versetzt und langsam aufwärmen gelassen wurden. Vor allem in Gegenwart von HMPT oder DMPU als Cosolvenzien¹³) bildeten sich in annehmbaren Ausbeuten (50–70%) und mit hervorragender Diastereoselektivität³⁶)³⁷) die Produkte **11**. Das deuterierte und das methylierte **11a** bzw. **11b** wurden zu den freien Aminosäuren **8a** bzw. **8b** hydrolysiert. Durch NMR und optischen Vergleich (bei **8a** und **11a**) sowie durch Vergleich mit Literaturdaten (bei L-2-Methylserin (**8b**) [46–51]) ist

- ³⁰) Vgl. hierzu die Alkylierung von einfachen Amino-, Hydroxy- und Mercapto-carbonsäuren über Acetale (Imidazolidinone [38], Oxazolidinone [39], Dioxolanone [40], Dioxanone [41] und Thiazolidinone [40]). S. auch Fussnote 31.
- ³¹) Über O-Benzylserin erhält man mit Pivalaldehyd 3-Benzoyl-4-(benzyloxymethyl)-2-(*tert*-butyl)oxazolidin-5on (vgl. [39] und [42]), dessen Enolat erstaunlich stabil gegenüber β-Eliminierung ist, so dass auch auf diese Weise Serin α-alkyliert werden könnte [43].
- ³²) Je nach Bedingungen kann auch eines der Isomeren 9a/10a im Rohprodukt überwiegen (z. B. 85% ds mit K_2CO_3 als H_2O -entziehendem Mittel [44]).
- ³³) Offensichtlich erfolgt unter den Bedingungen der N-Formylierung Ringöffnung/Ringschluss: Formylierung von 9a/10a in Et₂O bei Trockeneistemp. ergab 9b/10b von unverändertem *cis/trans*-Verhältnis.
- ³⁴) Die Epimerisierung derartiger Acetal-Zentren unter Acylierungsbedingungen wurde auch bei 2-Arylthiazolidin-4-carbonsäuren beobachtet; hierbei konnte je nach Bedingungen aus einem (1:1)-Gemisch entweder nur das *cis*- oder nur das *trans*-konfigurierte Produkt hergestellt werden [45].
- ³⁵) In Schema 4 ist willkürlich das (E)-Enolat C gezeichnet⁹).
- ³⁶) Wiederum bedeutet > 95 und > 98%, dass das zweite Diastereoisomer im Rohprodukt durch GC bzw. ¹³C-NMR nicht entdeckt wurde; nach Kristallisation war auch 11e konfigurativ einheitlich. Vor allem ohne Cosolvens bildete sich wieder Eliminierungsprodukt (2-(N-Formylamino)acrylsäure-ester). Mit Cosolvens reichte Kugelrohrdestillation oder Kristallisation aus, um analysenreine Produkte zu erhalten, sonst musste 'flash'-chromatographiert werden.
- ³⁷) Zunächst sah es so aus, als ob beide Epimere gebildet worden wären. Aufnahme des ¹H-NMR-Spektrums von **11b** in $(D_6)DMSO$ bei 25, 50 und 100° zeigte dann aber, dass Rotamere vorliegen!

²⁹) Wie bei der 'Roche-Säure' i [33] und analogen Verbindungen [34–36] kann bei Serin ii durch entsprechende Umwandlungen am Re- oder Si-C-Atom Bild oder Spiegelbild eines Produktes hergestellt werden. Durch die hier beschriebene stereoselektive Alkylierung von Serin sind somit z. B. spiegelbildliche Amine iii mit persubstituiertem C-Atom herstellbar; siehe auch die elegante Methode von Rapoport [37] zur Herstellung von D-Aminosäuren aus Serin.

bewiesen, dass (zumindest) Deuterierung und Methylierung von der der (*tert*-Butyl)-abgewandten Seite des Enolates erfolgen (rel. Topizität lk). Wie man aus Schema 4 ersieht, wird durch die hier beschriebene Methode Serin in 2-Stellung substituiert, und zwar unter Retention (Ersatz von H^{Re} durch R^{Re}), ohne dass ein chiraler Hilfsstoff³⁸) eingesetzt wurde. Das ursprüngliche stereogene Zentrum induziert die stereoselektive Bildung eines Acetal-Zentrums und dieses wiederum ist verantwortlich für die selektive Alkylierung unter Regenerierung eines stereogenen Zentrums an demjenigen C-Atom des Enolats C, das ursprünglich das Chiralitätszentrum des Serins war (Selbstreproduktion des Chiralitätszentrums). Dasselbe Prinzip wurde auch auf Glycerinsäure angewendet, die leicht aus Serin zugänglich ist.

E) Glycerinsäure. – Für dieses Substrat gilt grundsätzlich dasselbe wie für Serin (s. erster Abschnitt von Kap. D und Fussnoten 29 und 39). L-Glycerinsäure wurde durch

Produkt	Elektrophil	R	Ausbeute [%]	Selektivität	
			ohne Cosolvens	20% HMPT	[% ds]
14a	Methan(D)ol	D	80		> 95
14b	1-Brom-2-propen	$CH_2 = CHCH_2$	63	94	
14c	Benzylbromid	C ₆ H ₅ CH ₂		75	60
14d	Aceton	$(CH_3)_2C(OH)$	77		95
14e	Acetaldehyd	CH ₃ CH(OH)	25		60
14f	Benzaldehyd	C ₆ H ₅ CH(OH)	69		92
14g	Zimtaldehyd	C ₆ H ₅ CH=CHCH(OH)	60		66
14h	Acetophenon	C ₆ H ₅ CH ₃ C(OH)	63		89

³⁸) Der achirale Hilfsstoff Pivalaldehyd wird vielmehr verwendet!

³⁹) Die durch Alkylierung der Glycerinsäure erhältlichen Produkte iv und ent-iv mit tertiärer Alkohol-Funktion sind wiederum Edukte für enantiomere Zielmoleküle.

1201

Diazotierung von L-Serin nach bekanntem Verfahren⁴⁰) [52] hergestellt und mit Pivalaldehyd-dimethylacetal (= 1,1-Dimethoxy-2,2-dimethylpropan)⁴¹) zunächst zu einem nicht trennbaren *ca.* (2:3)-Gemisch der *cis/trans*-isomeren 2-(*tert*-Butyl)dioxolan-4-carbonsäure-methylester (vgl. 13, MeO statt *tert*-BuS, in *Schema 5*) umgesetzt⁴²). Durch Behandeln mit *in situ* erzeugtem (*tert*-Butylthio)dimethylaluminium [56] wurde der Methylester in den *S*-(*tert*-Butyl)thioester 13 überführt, der in etwa 40% Ausbeute als *trans/cis*-Gemisch mit bis zu (5:1)-Bevorzugung des *trans*-Isomeren 13a erhalten wurde⁴³). Während weder der Methyl- noch der (*tert*-Butyl)ester⁴⁴) der Dioxolancarbonsäure in befriedigenden Ausbeuten deprotoniert und alkyliert werden konnte⁴⁵), ergab der Thioester über das Enolat D⁴⁶) die Produkte 14 in Ausbeuten von 60–80% mit Diastereoselektivitäten von 60 bis über 95% (*Schema 5*). Ausser im Fall von 14c und 14e wurden die Hauptisomeren abgetrennt und charakterisiert. Die Produkte 14a und 14d wurden zu den freien Säuren 12a bzw. 12b hydrolisiert.

Für die Überlegenheit von Thioester-Enolaten (s. **D**) im Vergleich zu den O-Analogen gibt es eine Reihe von Präzedenzfällen in der Literatur: ihre grosse Bildungstendenz, die verblüffende Stabilität und die vorteilhaften Eigenschaften wurden wie im vorliegenden Fall schon öfters ausgenützt⁴⁷).

Die Konfigurationszuordnung der beiden Thioester 13a und 13b wurde mit Hilfe von Differenz-NOE-Spektren⁴⁸) durchgeführt. Im Dioxolan 14a stehen die *tert*-Butyl- und die Thioester-Gruppe *trans* zueinander; dies wurde durch den Vergleich der ¹H-NMR-Spektren von 13a und 14a und durch Korrelation des entsprechenden Hydrolyse-Produktes bewiesen. Dass der Angriff des Elektrophils auch in den anderen Fällen von

⁴²) Vgl. die Herstellung des entsprechenden Acetonid-methylesters der Glycerin-säure [53] und Fussnote 40.

⁴⁰) Die Originalvorschrift [52] wurde von Dr. R. Barner (F. Hoffmann-La Roche & Co. AG, Basel) verbessert, dem wir für entsprechende Mitteilung danken; s. die veröffentlichte Vorschrift [53] und deren Anwendung [54].

⁴¹) Herstellung s. Exper. Teil. Dieses Acetal kann vorteilhaft auch f
ür andere Umacetalisierungen zu cyclischen (tert-Butyl)-Derivaten eingesetzt werden [55].

⁴³) Die beiden Isomeren 13a und 13b konnten 'flash'-chromatographisch getrennt werden (s. Exper. Teil.)

 ⁴⁴) Der 2-(*tert*-Butyl)dioxolan-4-carbonsäure-(*tert*-butyl)ester (13; *t*-BuO statt *t*-BuS) wurde aus dem Methylester (Gemisch der beiden Diastereoisomeren; s. *Exper. Teil*, Herstellung von 13) durch alkalische Verseifung und Veresterung mit DMF/Oxalylchlorid/*t*-BuOH (nach *Stadler* [57]) hergestellt. *cis*-Isomer (2*S*,4*S*): 16% Ausbeute, Öl. [α]_D = -18° (*c* = 1,1, CHCl₃). ¹H-NMR (CDCl₃): 0,96, 1,43 (*t*-Bu); 4,6 (H-C(2)) ppm. *trans*-Isomer (2*R*,4*S*): 36% Ausbeute, Schmp. 40-41,5°. [α]_D = -20° (*c* = 1, CHCl₃). ¹H-NMR (CDCl₃): 0,93, 1,48 (*t*-Bu); 4,75 (H-C(2)) ppm.

⁴⁵) Der Methylester zersetzte sich beim Behandeln mit Li(i-Pr)₂N. Der (*tert*-Butyl)ester konnte zwar ohne Zersetzung deprotoniert und auch alkyliert werden, aber in schlechten Ausbeuten und mit geringerer Diastereoselektivität als das S-Analoge⁴).

⁴⁶) Die (E)-Konfiguration von **D** in Schema 5 ist nicht bewiesen⁹).

⁴⁷) Die etwas höhere Acidität der Thioester (ca. 2 pK_S-Einheiten [58], vgl. die Coenzym-A-Ester) scheint hierbei nicht die massgebliche Ursache für den Unterschied zu sein, s. z. B. die Diskussion in [59]. Selbst S-Phenylthioester (hochreaktive Acylierungsmittel!) sowie Cyclopropan- und Aziridinthiocarbonsäure-S-ester lassen sich leicht mit Li(i-Pr)₂N bei tiefer Temperatur zu Li-Enolaten deprotonieren, s. [59–62] und Diskussion in [63]. Thioester Li- und B-Enolate reagieren oft selektiver [64], z. B. in Michael-Additionen [65] und in diastereoselektiven Aldol-Additionen [66–68], als die O-Analogen. Für Acylierungen [69], d. h. auch zur Hydrolyse oder Umesterung, können Thioester selektiv aktiviert werden, z. B. durch Komplexierung mit Metall-Ionen oder durch Oxidation (s. dazu die in den Übersichtsartikeln [70] über Makrolid-Synthesen zitierten Arbeiten von Corey, Gerlach, Masamune, Mukaiyama und Young).

⁴⁸) Positiver NOE bei Einstrahlung der (CH₃)₃C-C(2)-Frequenz auf H-C(4) (300-MHz-Spektrometer mit Differenz-Registrierung).

derjenigen Seite des Enolats stattfindet, auf welcher die t-Bu-Gruppe sitzt, konnte durch Differenz-NOE-Messungen an $14b^{49}$) und $14d^{50}$) bestätigt werden.

F) Diskussion des sterischen Verlaufs der Enolat-Alkylierungen. – Die hier beschriebenen Reaktionen laufen alle über Ester-Enolate mit exocyclischer Enolat-Doppelbindung. In zwei Fällen (B und C) erfolgt der bevorzugte Angriff der Elektrophile von derjenigen diastereotopen Seite, die vom 1,2- bzw. 1,3-ständigen Substituenten am Ring abgewandt ist ('anti'-Angriff), in den anderen beiden Fällen (A und D) nähern sich die Elektrophile von derselben Seite des Ringes, auf welcher der Substituent steht ('syn'-Angriff). Die vier Enolate A-D sind in Schema 6 nochmals dargestellt, und zwar mit dem lithiierten O-Atom an der Enolat-Doppelbindung in cis-Stellung zum benachbarten ringständigen Heteroatom; für diese Konfiguration gibt es gewisse Hinweise⁵¹), aber

⁴⁹) Positiver NOE bei Einstrahlung der (CH₃)₃C-C(2)-Frequenz auf H-C(1') und H-C(2') (300-MHz-Spektrometer mit Differenz-Registrierung).

⁵⁰) Vermessung verschiedener NOE, s. Exper. Teil.

⁵¹) Wie z. B. der sterische Verlauf der Aldol-Addition von α -Alkoxyester-Enolaten an Aldehyde [71].

keine harten Beweise⁹)³⁵)⁴⁶). Anscheinend normal verhalten sich die Enolate B und C mit zwei oder mehr – formal⁵²) – sp²-hybridisierten Ring-Atomen; die Beobachtung, dass das N-Formyl-Acetonid von Threonin-ester nur mässig stereoselektiv alkyliert werden kann²¹), lässt sich dadurch deuten, dass ja das zugehörige Enolat **B'** auf beiden Seiten der Enolat-Doppelbindungsebene Substituenten trägt. Andererseits ist der 'syn'-Angriff an den Enolaten A und D von Dioxolancarbonsäureestern auf den ersten Blick sehr überraschend⁵³), aber inzwischen durch zahlreiche weitere Beispiele belegt⁵⁴), bei denen statt der Ester-Gruppe in A auch einfache Alkyl-Substituenten vorhanden sein können⁵⁵). Neuere Arbeiten legen nahe, dass sich andere Typen von Enolaten mit exocyclischen Doppelbindungen an einem Heterocyclus, wie z. B. E [79] und F [62], ebenso verhalten, und dass Enolate und Enaminate mit endocyclischen Doppelbindungen mit Elektrophilen ebenfalls unter 1,3- oder 1,4- 'svn'-Angriff reagieren⁵⁶) können. Eine stärkere und andersartige Faltung der Enolate A und D-F als diejenige der in Schema 6 willkürlich planar gezeigten Enolate B und C kann für die beobachteten Ergebnisse verantwortlich gemacht werden. Diese kann auf die Abstossung zwischen den Elektronenpaaren am O-Atom von A und D bzw. am N-Atom von E und F und dem elektronenreichen Enolat- π -System⁵⁷) zurückgeführt werden (s. hierzu die in den Strukturen von Ester-(G [84]) und Amid-Enolaten (H [85], I [86]) gefundenen Geometrieänderungen (Umhybridisierungen) am O-Atom von RO bzw. N-Atom von R_2N im Vergleich zu den nicht deprotonierten Vorläufern). Zusätzlich könnte das vom Elektrophil anzugreifende Enolat-C-Atom durch eine – in D angedeutete – Chelatisierung zum Brückenkopfatom eines Bicyclus werden, dessen exo-Seite reaktiver ist⁵⁸).

Wir danken der Firma Sandoz AG (Basel) für finanzielle Unterstützung, der Degussa Aktiengesellschaft (Hanau) für die Überlassung der Aminosäuren und der BASF Aktiengesellschaft (Ludwigshafen) für den Pivalaldehyd. Unser Dank geht auch an Herrn K. Job (Herstellung des Pivalaldehyd-dimethyl-acetals), Fräulein B. Brandenberg und Herrn F. Fehr (NMR-Spektren), Herrn D. Manser (Elementaranalyse) und Frau L. Golgowsky (Massenspektren).

⁵²) Der Energieaufwand zur Pyramidalisierung eines Amid-N-Atoms ist nicht gross [72]. In einem N-Benzoyloxazolidinon wurde vor kurzem durch Röntgenstrukturanalyse ein stark pyramidalisiertes N-Atom nachgewiesen [73]. In einem Enolat wie B' oder C kann eine solche Pyramidalisierung (also Hybridisierung zwischen sp² und sp³) erst recht vorliegen; sie würde zur Verringerung einer destabilisierenden Konjugation im System ^ΘO-C=C-N-C=O (6 Atome, 8 π-Elektronen, vgl. die Diskussion in [74]) beitragen.

⁵³) S. den Vergleich mit analogen carbocyclischen Enolaten und die Diskussion von *Evans in* [75].

⁵⁴) In einer etwa ein Jahr nach unserer Kurzmitteilung über die Alkylierung des Weinsäure-ester-Acetonids via A [1] erschienenen Arbeit hat Ladner den Ausdruck 'kontrasterischer Angriff' für derartige Reaktionen benutzt [76], s. auch die ausführliche Diskussion in [77] [78].

⁵⁵) Dies zeigt, dass die O-Atome der Ester-Gruppe in unserem Fall nicht für diese 'syn'-Lenkung verantwortlich sind.

⁵⁶) Monocyclische: Bislactimether [80], 1,3-Dioxan-4-one [6]. Bicyclische: Prolin-[81], Hydroxyprolin-[82], Cystein-[27] und γ-Keto-carbonsäure-Derivate [83].

⁵⁷) Daraus resultiert auch eine hohe Energiebarriere für die Inversion am Heteroatom.

⁵⁸) Li-Enolate können als dimere, tetramere oder noch höhere Aggregate vorliegen und auch als solche reagieren (s. den Übersichtsartikel [15] und die Diskussionen in [87–90]), was eine Deutung ihrer Reaktionen kompliziert.

Experimenteller Teil

Allgemeines. Allgemeine Arbeitsvorschrift (AAV). HV.: $10^{-1}-10^{-3}$ Torr. Lsgm.: Fluka (puriss.) oder über geeignetem Trocknungsmittel destilliert. DC: DC-Fertigplatten Kieselgel 60 F_{254} (Merck); Sichtbarmachen durch UV-Licht oder durch Besprühen mit einer Lsg. aus 25 g Phosphormolybdänsäure, 10 g Ce(SO₄)₂·4 H₂O, 60 ml konz. H₂SO₄ und 940 ml H₂O oder Ninhydrinlsg. und anschliessendem Erhitzen. Chromatographie: 'flash'-Chromatographie mit Kieselgel der Firma Merck (Korngrösse 0,040–0,063 mm). Gehalt am Überschussdiastereoisomeren, % ds, wurde (a) durch ¹H-NMR, (b) durch Kapillar-GC (Carlo Erba Fractovap 2457, Trennsäulen SE-54 oder Pluronic-L64), (c) durch ¹³C-NMR-Analyse der Rohprodukte bestimmt. Schmp.: Tottoli-Apparatur (Bü-chi). Destillationen: Kugelrohrofen GKR-50 (Büchi, Angabe der Temp. des Luftbades). Spezifische Drehung: Perkin-Elmer-291-Polarimeter. IR: Perkin-Elmer-297-Spektrophotometer; Angaben in cm⁻¹. ¹H-NMR und ¹³C-NMR: Varian-EM-390, -AN-100, -XL-100 und CFT-20 sowie Bruker 300- und 360-MHz-Spektrometer; chemische Verschiebungen in ppm bzgl. TMS (= 0 ppm), Kopplungskonstanten J in Hz. MS: Hitachi-Perkin-Elmer-RMU-6 M und Varian-MAT-111 (GC/MS-System); m/z-Werte, rel. Intensitäten (in %) in Klammern.

1,1-Dimethoxy-2,2-dimethyl-propan. Es wurden 330 ml Pivalaldehyd und 20 g Ionentauscher (Amberlyst 15 (Fluka AG), mit konz. HCl-Lsg. aktiviert und anschliessend mit H₂O, EtOH und Et₂O neutral gewaschen) gemischt und gekühlt (Eisbad). Orthoameisensäure-methylester (330 ml, 1 Äquiv.) wurde so zugetropft, dass die Temp. nicht über 10° stieg. Das Gemisch wurde 30 min bei RT. gerührt, dann wurde der Ameisensäure-methylester abdestilliert (Sdp. 32°). Nach Abfiltrieren wurde das MeOH abgedampft: 322 g (81%) Produkt. ¹H-NMR (CDCl₃): 3,75 (s, H-C(1)); 3,46 (s, 2 CH₃O); 0,9 (s, (CH₃)₃C).

Weinsäure. – AAV 1: Alkylierung des Acetonids der Weinsäure. Zu einer –78° kalten Lsg. von 10 mmol (4R,5R)-2,2-Dimethyldioxolan-4,5-dicarbonsäure-dimethylester (käuflich) und 15 mmol Elektrophil in 50 ml THF und 10 ml HMPT wurden innert 30 min 50 ml 0,20M Li(i-Pr)₂N (THF/Hexan 43:7) getropft. Über Nacht wurde die Lsg. auf –5° erwärmt, in ca. 150 ml Et₂O aufgenommen und 5× mit je 100 ml dest. H₂O gewaschen. Die org. Phase wurde getrocknet (MgSO₄) und das Lsgm. abgedampft. Kugelrohrdestillation gab Gemische der Isomeren 1 und 2 in den im Schema 2 angegebenen Ausbeuten und Selektivitäten^{5a}).

(4R,5R)-4-(p-Methoxybenzyl)-2,2-dimethyldioxolan-4,5-dicarbonsäure-dimethylester (1e). Aus 6,54 g (30 mmol) (4R,5R)-2,2-Dimethyldioxolan-4,5-dicarbonsäure-dimethylester und 13,2 g (70 mmol) (p-Methoxybenzyl)-bromid [91] wurden nach AAV l und Kugelrohrdestillation 7,8 g (77%) 1e (82% ds (a)) erhalten. Präp. HPLC (RP-8, MeOH/H₂O 8:2) ergab diastereoisomerenreines 1e als farbloses Harz. Sdp. (Luftbad) 150°/10⁻² Torr. [α]₂₅²⁵ = -44,5° (c = 1, CHCl₃; 95% ds). ¹H-NMR (CDCl₃): 6,95 (AA'BB', J = 9, 30, 4 arom. H); 4,93 (s, H-C(5)); 3,86 (s, CH₃O); 3,76 (s, CH₃O); 3,66 (s, CH₃O); 3,07 (d, J = 13, H-C(1')); 2,83 (d, J = 13, H-C(1')); 1,70, 1,41 (2s, 2 CH₃C). ¹³C-NMR (CDCl₃): 171,3 (s); 168,19 (s); 158,19 (s); 130,66 (d); 126,21 (s); 113,02 (d); 112,53 (s); 85,92 (s); 79,70 (d); 54,43 (q); 51,70 (q); 39,07 (t); 27,21 (q); 25,38 (q). MS: 338 (10, M⁺⁺), 221 (15), 161 (28), 121 (100), 59 (25), 43 (41).

(2R, 3R)-4'-O-Methylpiscidinsäure-dimethylester (= (2R, 3R)-2,3-Dihydroxy-2-(4'-methoxybenzyl)butandisäure-dimethylester; 3). Eine Lsg. von 4,0 g (11,8 mmol) 1e (82% ds) in 100 ml wässr. 0,2N HCl wurde 19 h unter Rückfluss gekocht. Die Lsg. wurde bis auf *ca*. 50 ml eingedampft, mit NaCl gesättigt und 3× mit CH₂Cl₂ extrahiert. Die vereinigten org. Extrakte wurden getrocknet (MgSO₄) und das Lsgm. abgedampft: 3,3 g (94%) 3 (82% ds (*a*)). Durch 3mal Umkristallisieren aus Benzol/Hexan wurden 540 mg diastereoisomereneines 3 erhalten. Sdp. (Luftbad) 160°/10⁻³ Torr. Schmp. 107°. $[\alpha]_D^{25} = -26,3^{\circ}$ (*c* = 0,6, CHCl₃). IR (CHCl₃): 3520m_(br.), 2950m, 1738s, 1508m, 1250s. ¹H-NMR (CDCl₃): 6,96 (*AA' BB'*, *J* = 9, 30, 4 arom. H); 4,43 (*s*, H–C(3)); 3,78, 3,77, 3,73 (*ss*, 3 CH₃O); 3,53 (br. *s*, 2 OH); 3,07 (*s*, CH₂(1')). MS: 298 (5, *M*⁺⁺), 122 (11), 121 (100), 78 (10), 55 (10). Anal. ber. für C₁₄H₁₈O₇ (298,28): C 56,38, H 6,08; gef.: C 56,29, H 6,08.

Mittels präp. HPLC (*RP-8*, MeOH/H₂O 8:2) wurde das Nebendiastereoisomere isoliert. Dieses erwies sich als enantiomer verunreinigtes (2*R*,3*S*)-3. Schmp. 104°. $[\alpha]_{25}^{25} = +3,3°$ (c = 0,6, CHCl₃).

Eine Probe des Naturstoffes 4'-O-Methylpiscidinsäure-dimethylester wurde von Prof. Ch. Tamm (Universität Basel) zur Verfügung gestellt²⁰) und hatte folgende physikalische Eigenschaften: Schmp. 109°. $[\alpha]_D^{25} = +43.2^{\circ}$ (c = 0,6; CHCl₃).

Threonin. – AAV 2 (ohne Cosolvens). Zu einer gekühlten Lsg. (-78°) von 5,5 mmol Li(i-Pr)₂N in 33 ml THF/Hexan 10:1 wurden innert 5 min 5 mmol Dihydrooxazol cis-4 oder trans-4 in 6 ml THF unter Ar zugegeben. Nach 1 h Rühren bei -78° wurden 12,5 mmol Elektrophil zugetropht. Während 4 h wurde bei -78° gerührt und, nachdem das Trockeneis aus dem Kühlbad entfernt worden war, innert 10 h auf ca. 0° aufgewärmt. Die homogene, goldgelbe Lsg. wurde in 400 ml Pentan, 180 ml ges. NH₄Cl-Lsg. und 20 ml H₂O aufgenommen. Die org. Phase wurde mit 80 ml ges. NaCl-Lsg. neutral gewaschen, getrocknet (Na₂SO₄), eingedampft und bei 50°/0,05 Torr getrocknet.

AAV 3 (mit Cosolvens). Zu einer -78° kalten Lsg. von 5,5 mmol Li(i-Pr)₂N in 33 ml (für HMPT) bzw. 28 ml (für DMPU) THF/Hexan *ca.* 10:1 wurden 6 ml HMPT bzw. 8 ml DMPU gegeben. Nach 10 min Rühren bei -78° wurden innert *ca.* 5 min 5 mmol Dihydrooxazol *cis*-4 oder *trans*-4 in 6 ml THF zugetropft. Die sofort dunkelrot werdende Lsg. wurde nach 1 h bei -78° mit 12,5 mmol Elektrophil versetzt. Während 2 h wurde die orange werdende Lsg. bei -78° gerührt und nach Entfernung des Trockeneises im Kühlbad innert 9 h auf *ca.* 0° erwärmt. Die hellgelbe, z. T. heterogene Mischung wurde in 80 ml halbges. NH₄Cl-Lsg. und 400 ml Pentan aufgenommen. Die org. Phase wurde 3× mit 50 ml dest. H₂O gewaschen, getrocknet (Na₂SO₄), und das Lsgm. abgedampft.

AAV 4: Herstellung von 4,5-Dihydro-4-(hydroxyalkyl)-5-methyl-2-phenyloxazol-4-carbonsäure-methylester. Zu einer gekühlten Lsg. (-78°) von 5,25 mmol Li(i-Pr)₂N in 30 ml THF wurden tropfenweise 5 mmol cis-4 oder trans-4 in total 6 ml THF unter Ar zugegeben. Nach 1 h Rühren bei -78° wurden 6 mmol Carbonyl-Verbindung zugetropft. Nach 10 min bei -78° wurden 17,5 mmol AcOH in 3 ml THF zugespritzt. Das Gemisch wurde in 400 ml Pentan/100 ml halbges. NaHCO₃-Lsg. aufgenommen. Nachdem die org. Phase mit 50 ml ges. NaCl-Lsg. gewaschen und getrocknet (Na₂SO₄) worden war, wurde eingedampft und das erhaltene Öl 30 min bei $80^{\circ}/0,01$ Torr getrocknet.

AAV 5: Herstellung der zwitterionischen Form der Aminosäuren. Das nach der Hydrolyse erhaltene Aminosäure-hydrochlorid (ca. 2,5 mmol) wurde in 2 ml H₂O an 20 g saurem Ionentauscher (Dowex 50 $W \times 8$) adsorbiert. Nach dem Neutralwaschen des Harzes mit dest. H₂O wurde die freie Aminosäure mit 1,3N wässr. NH₃-Lsg. eluiert und das Eluat eingedampft. Der Rückstand wurde in H₂O gelöst, eingedampft und ca. 5 h bei 50°/0,01 Torr im Kugelrohrofen getrocknet.

(4S, 5R)-4,5-Dihydro-5-methyl-2-phenyloxazol-4-carbonsäure-methylester (trans-4) [23]. Eine Lsg. von 67,9 g (400 mmol) L-Threonin-methylester-hydrochlorid in 40 ml H₂O wurde mit einer Lsg. von 95 g (703 mmol) Benzoimidsäure-methylester [92] in 200 ml Et₂O versetzt und 20 h bei RT. heftig gerührt. Nachdem 70 ml H₂O zugegeben worden waren, wurde die Et₂O-Phase abgetrennt, die H₂O-Phase 2× mit 300 ml Et₂O extrahiert, die gesamte org. Phase mit 100 ml ges. NaCl-Lsg. gewaschen, getrocknet (MgSO₄), eingedampft und der Rückstand im Kugelrohrofen destilliert. Bei 100°/2·10⁻⁵ Torr wurde der überschüssige Imidsäure-ester total entfernt, danach wurden bei 145–150°/2·10⁻⁵ Torr (bei zu hoher Temp. tritt Epimerisierung an C(5) ein) 62,02 g (70,7%; 98,4% ds⁵⁹) (b)) trans-4 als farbloses Öl erhalten.

Sdp. $105^{\circ}/6 \cdot 10^{-5}$ Torr. $[\alpha]_{BT}^{DT} = +96,7^{\circ}(c = 1,18, CHCl_3)$. IR (CHCl_3): 2985*m*, 2960*w*, 1739*s*, 1640*s*, 1603*w*, 1580*w*, 1495*w*, 1451*m*, 1438*m*, 1345*m*, 1322*m*, 1281*m*, 1092*m*, 1070*m*, 1029*m*, 692*m*. ¹H-NMR (CDCl_3): 8,18–8,00, 7,65–7,40 (2*m*, 5 arom. H); 5,21–4,90 (*m*, H–C(5)); 4,53 (*d*, J = 7,5, H–C(4)); 3,87 (*s*, CH₃O); 1,62 (*d*, J = 6,6, CH₃–C(5)). ¹³C-NMR (CDCl_3): 171,54; 165,50; 131,77; 128,63; 128,34; 127,48; 78,92; 75,33; 52,48; 20,94. MS: 219 (5, *M*⁺⁺), 161 (12), 160 (100), 132 (19), 105 (22), 77 (23), 57 (20). Anal. ber. für C₁₂H₁₃NO₃ (219,24): C 65,74, H 5,98, N 6,39; gef. : C 65,73, H 6,12, N 6,52.

(4 R/S,5 S)- (4^{-2}H) -4,5-Dihydro-5-methyl-2-phenyloxazol-4-carbonsäure-methylester (ent-**5a**/4-Epimer). Zu einer gekühlten Lsg. (-78°) von 4,72 mmol Li(i-Pr)₂N in 30 ml THF wurden tropfenweise 0,99 g (4,50 mmol) *cis*-4 in 6 ml THF unter Ar zugegeben. Nach 1 h Rühren bei -78° wurden 3,3 ml (5,17 mmol) 1,58M BuLi zugetropft. Die Lsg. wurde nach 30 min Rühren bei -78° mit 1,5 ml (24,74 mmol) AcOD (in 3 ml THF) versetzt und nach 3 min (-78°) in 400 ml Pentan/100 ml halbges. NaHCO₃-Lsg. aufgenommen. Nachdem die org. Phase mit 50 ml ges. NaCl-Lsg. gewaschen und über Na₂SO₄ getrocknet worden war, wurde eingedampft und das erhaltene Öl bei 80°/0,01 Torr 30 min getrocknet: 0,95 g (95,9%; 50% ds, (*a*)) *ent*-**5a**/4-Epimer als gelbes Öl. Deuterierungsgrad (MS): 94%. ¹H-NMR (CDCl₃; Gemisch zweier Diastereoisomeren): 8,15–7,88, 7,65–7,25 (2*m*, 5 arom. H); 5,03, 4,95 (*q*, J = 6,6, 6,0, H-C(5)); 3,78, 3,72 (*s*, CH₃O); 1,50, 1,36 (*d*, J = 6,6, 6,0, CH₃-C(5)).

(4S,5S)-4,5-Dihydro-4,5-dimethyl-2-phenyloxazol-4-carbonsäure-methylester (ent-**5b**). Nach AAV 2 wurden aus 1,09 g (4,98 mmol)*cis*-**4**und 0,8 ml (12,5 mmol) MeI nach Kugelrohrdestillation 1,07 g (92,3 %; 94,6 % ds (*b*))*ent*-**5b** $als farbloses Öl erhalten. Sdp. 120°/5·10⁻⁵ Torr. [<math>\alpha$]_B^{T.} = -9,5° (*c* = 1,14, CHCl₃). IR (CHCl₃): 2985*m*, 1732*s*, 1647*s*, 1582*w*, 1452*m*, 1341*m*, 1150*m*, 1071*s*, 1031*w*, 699*m*. ¹H-NMR (CDCl₃, 300 MHz): 7,99-7,96, 7,51-7,37 (2*m*, 5 arom. H); 4,53 (*q*, *J* = 6,5, H-C(5)); 3,74 (*s*, CH₃O); 1,61 (*s*, CH₃-C(4)); 1,35 (*d*, *J* = 6,5, CH₃-C(5)). ¹³C-NMR (CDCl₃): 172,49 (*s*); 164,50 (*s*); 131,64 (*d*); 128,51 (*d*); 128,31 (*d*); 127,66 (*s*); 84,68 (*d*); 77,14 (*s*); 52,15 (*q*); 25,29 (*q*); 16,43 (*q*). MS: 234 (0,2, *M*⁺⁺ + 1), 175 (23), 174 (100), 105 (55), 104 (77), 103 (9), 77 (43), 71 (59), 51 (14), 43 (52). Anal. ber. für C₁₃H₁₅NO₃ (233,27): C 66,93, H 6,48, N 6,01; gef.: C 66,77, H 6,58, N 6,01.

(4S,5S)-4-Ethyl-4,5-dihydro-5-methyl-2-phenyloxazol-4-carbonsäure-methylester (ent-5c). Nach AAV 3 (mit HMPT) wurden aus 1,10 g (5,00 mmol) cis-4 und 1 ml (12,50 mmol) EtI nach Kugelrohrdestillation 1,17 g (94,4%;

⁵⁹) Da nach der α-Methylierung von *trans*-4 genau die enantiomere Verbindung der α-Methylierung von *cis*-4 erhalten wurde, muss es sich bei der diastereoisomeren Verunreinigung von *trans*-4 um das C(4)-Epimere (4R,5R)-Dihydro-Oxazolin handeln.

94,7% ds (*b*)) *ent*-5c als schwach gelbes Öl erhalten. Sdp. $125^{\circ}/6 \cdot 10^{-6}$ Torr. $[\alpha]_{D}^{RT.} = -54,3^{\circ}$ (*c* = 0,91, CHCl₃). IR (CHCl₃): 2980*m*, 1730*s*, 1646*s*, 1579*w*, 1492*w*, 1450*m*, 1381*w*, 1351*m*, 1141*m*, 1069*s*, 1028*m*, 1009*m*, 882*w*. ¹H-NMR (CDCl₃): 8,17–7,92, 7,59–7,34 (2*m*, 5 arom. H); 4,60 (*q*, *J* = 6,6, H–C(5)); 3,77 (*s*, CH₃O); 2,40–1,45 (*m*, CH₂–C(4)); 1,35 (*d*, *J* = 6,6, CH₃–C(5)); 1,01 (*t*, *J* = 7,5, CH₃CH₂). ¹³C-NMR (CDCl₃): 172,41 (*s*); 164,11 (*s*); 131,55 (*d*); 128,56 (*d*); 128,27 (*d*); 127,80 (*s*); 82,58 (*d*); 81,32 (*s*); 52,01 (*q*); 32,23 (*t*); 16,92 (*q*); 8,31 (*q*). MS: 248 (0,4, *M*⁺⁺ + 1), 189 (14), 188 (100), 176 (7), 105 (30), 104 (29), 85 (21), 77 (26), 43 (74), 28 (24). Anal. ber. für C₁₄H₁₇NO₃ (247,30): C 67,99, H 6,93, N 5,66; gef.: C 67,92, H 7,06, N 5,67.

Ohne HMPT konnten nur 66% ent-5c durch GC-Analyse nachgewiesen werden, in Gegenwart von 25% DMPU statt HMPT war die Ausbeute 91%.

(4 R, 5 R)-4,5-Dihydro-5-methyl-4-(3'-methylbutyl)-2-phenyloxazol-4-carbonsäure-methylester (5d). Nach *AAV 3* (mit HMPT) wurde eine Enolat-Lsg. von 1,20 g (5,49 mmol) *trans*-4 mit 1,7 ml (13,72 mmol) 1-Brom-3-methylbutan während 26 h bei -78° gerührt und dann innert 12 h auf +4° aufgewärnt. Nach Aufarbeitung und Reinigung durch Chromatographie (Pentan/Et₂O 5:2) wurden 0,98 g (61,5%; > 98% ds (b)) 5d als schwach gelbes Öl erhalten. $[\alpha]_{B^{T.}}^{B^{T.}} = +65,4°$ (c = 1,14, CHCl₃). IR (CHCl₃): 2960s, 2875m, 1730s, 1649s, 1605w, 1581w, 1494w, 1451m, 1345m, 1150m, 1090m, 1065s, 1029m, 882w, 696m. ¹H-NMR (CDCl₃): 8,19-7,96, 7,62-7,36 (2m, 5 arom. H); 4,60 (q, J = 6, C(H₃)₂C). ¹³C-NMR (CDCl₃): 172,44 (s); 163,96 (s); 131,53 (d); 128,57 (d); 128,26 (d); 127,83 (s); 83,00 (d); 81,04 (s); 51,99 (q); 37,40 (t); 32,82 (t); 28,32 (d); 22,46 (q); 16,93 (q). MS: 290 (1,6, M^{++} + 1), 231 (17), 230 (100), 174 (12), 109 (21), 105 (51), 104 (21), 77 (36), 69 (15), 43 (54), 41 (14). Anal. ber. für C₁₇H₂₃NO₃ (289,38): C 70,56, H 8,01, N 4,84; gef.: C 70,52, H 7,99, N 4,68.

(4R,5R)-4,5-Dihydro-5-methyl-4-(1'-methylethyl)-2-phenyloxazol-4-carbonsäure-methylester (5e). Nach AAV 3 (mit HMPT) wurde eine Enolat-Lsg. von 1,20 g (5,49 mmol) trans-4 mit 1,4 ml (13,72 mmol) 2-Iodpropan 11 h bei -78° gerührt und dann innert 11 h auf $+6^\circ$ aufgewärmt. Nach Aufarbeitung und Chromatographie (Et₂O/Pentan 1:1) wurden 1,22 g (84,8%; 98,4% ds (b)) **5e** als farbloses Öl erhalten. $[a]_{12}^{BT.} = +97.4^\circ$ (c = 0,99, CHCl₃). IR (CHCl₃): 2979s, 1727s, 1649s, 1581w, 1451m, 1339m, 1137m, 1089m, 1070m, 1061m, 1029s, 870w, 693m. ¹H-NMR (CDCl₃): 8,12-7,91, 7,55-7,28 (2m, 5 arom. H); 4,69 (q, J = 6,3, H-C(5)); 3,74 (s, CH₃O); 2,29 (sept., J = 6,5, CH-C(4)); 1,31 (d, J = 6,3, CH₃-C(5)); 1,05 (d, J = 6,5, CH₃C-C(4)); 0,87 (d, J = 6,5, CH₃C-C(4)). ¹³C-NMR (CDCl₃): 172,55; 163,71; 131,50; 128,60; 128,25; 127,73; 84,76; 80,81; 51,80; 36,21; 18,11; 17,73; 16,01 MS: 262 ($2, M^{++} + 1$), 218 (63), 203 (18), 202 (84), 186 (17), 176 (40), 174 (15), 105 (82), 104 (39), 103 (32), 78 (20), 77 (63), 76 (16), 51 (27), 50 (17), 44 (16), 43 (100), 42 (18), 41 (29), 39 (29). Anal. ber. für C₁₃H₁₉NO₃ (261,32): C 68,94, H 7,33, N 5,36; gef.: C 68,84, H 7,26, N 5,40.

(4S,5S)-4-Allyl-4,5-dihydro-5-methyl-2-phenyloxazol-4-carbonsäure-methylester (ent-**5f**). Nach AAV 2 wurden aus 1,13 g (5,14 mmol) *cis*-**4** und 1,1 ml (12,84 mmol) Allyl-bromid nach Kugelrohrdestillation 1,27 g (95,5%; 98,7% ds (*b*)) *ent*-**5f** als farbloses Öl erhalten. Sdp. 150°/2·10⁻⁵ Torr. $[\alpha]_D^{\text{TT}} = -28,0°$ (*c* = 1,17, CHCl₃). IR (CHCl₃): 3060 (sh), 2990*m*, 1735*s*, 1649*s*, 1585*w*, 1455*m*, 1440*m*, 1350*m*, 1095*w*, 1066*m*, 1031*m*, 930*w*, 700*m*. ¹H-NMR (CDCl₃): 8,18–7,92, 7,60–7,32 (2*m*, 5 arom. H); 6,13–5,62 (*m*, 1 H, CH=CH₂); 5,35–5,04 (*m*, 2 H, CH=CH₂); 4,67 (*q*, J = 6.3, H–C(5)); 3,77 (*s*, CH₃O); 2,98–2,44 (*m*, CH₂CH=CH₂); 1,36 (*d*, J = 6.3, CH₃–C(5)). ¹³C-NMR (CDCl₃): 171,91 (*s*); 164,50 (*s*); 132,41 (*d*); 131,64 (*d*); 128,56 (*d*); 128,28 (*d*); 127,57 (*s*); 119,48 (*t*); 81,90 (*d*); 80,37 (*s*); 52,10 (*q*); 42,80 (*t*); 16,75 (*q*). MS: 259 (2, M^+), 219 (15), 218 (100), 200 (44), 176 (65), 174 (15), 105 (39), 104 (18), 97 (30), 77 (40), 51 (11), 43 (64). Anal. ber. für C₁₅H₁₇NO₃ (259,29): C 69,48, H 6,61, N 5,40; gef.: C 69,59, H 6,73, N 5,41.

(4S,5S)-4-Benzyl-4,5-dihydro-5-methyl-2-phenyloxazol-4-carbonsäure-methylester (ent-5g). Nach AAV 2 wurden aus 1,09 g (4,98 mmol) cis-4 und 1,5 ml (12,45 mmol) Benzylbromid nach Chromatographie (Et₂O/Pentan 1:1) 1,44 g (93,4%; > 98% ds (b)) ent-5g als schwach gelbes Öl erhalten. Sdp. 180°/6·10⁻⁶ Torr. [α]_D^{RT} = +4,6° (c = 0,92, CHCl₃). IR (CHCl₃): 3060 (sh), 2980m, 2955m, 1729s, 1644s, 1601w, 1580w, 1494m, 1450m, 1435m, 1350m, 1092m, 1060s, 1029m, 692m. ¹H-NMR (CDCl₃): 8,06–7,83, 7,53–7,10 (2m, 5 arom. H); 4,70 (q, J = 6,3, H–C(5)); 3,72 (s, CH₃O); 3,40, 3,10 (AB, J = 13,5, 2 benzyl. H); 1,34 (d, J = 6,3, CH₃-C(5)). ¹³C-NMR (CDCl₃): 172,01 (s); 164,16 (s); 135,59 (s); 131,56 (d); 130,86 (d); 128,48 (d); 128,23 (d); 127,99 (d); 127,62 (s); 126,79 (d); 81,83 (d); 81,40 (s); 52,19 (q); 44,25 (t); 16,75 (q). MS: 309 (1, M^+), 250 (10), 219 (14), 218 (100), 176 (57), 174 (14), 105 (32), 91 (28), 77 (38), 43 (31). Anal. ber. für C₁₉H₁₉NO₃ (309,35): C 73,76, H 6,19, N 4,53; gef.: C 73,55, H 6,27, N 4,50.

(4 R,5 S)-4,5-Dihydro-4-(1'-hydroxy-1'-methylethyl)-5-methyl-2-phenyloxazol-4-carbonsäure-methylester (**5h**). Nach AAV 4 wurden aus 1,06 g (4,82 mmol) cis-4 und 0,9 ml (12,05 mmol) Aceton nach Chromatographie (Et₂O/Pentan 1:2, dann 1:1) 0,91 g (67,7%; >95% ds (c)) ent-**5h** als farbloses Öl erhalten. $[\alpha]_{\text{R}^{\text{T}}}^{\text{R}^{\text{T}}} = -27,5^{\circ}$ (c = 1,22, CHCl₃). IR (CHCl₃): 3510w (br.), 2985m, 1710s, 1643s, 1580w, 1451m, 1357m, 1054s, 958w, 840w. ¹H-NMR (CDCl₃): 8,11-7,92, 7,56-7,34 (2m, 5 arom. H); 5,17 (q, J = 6,3, H-C(5)); 3,78 (s, CH₁O); 3,60 (s, OH); 1,43 (s, CH₃C-C(4)); 1,37 (d, J = 6,3, CH₃-C(5)); 1,15 (s, CH₃C-C(4)). ¹³C-NMR (CDCl₃): 173,67 (s); 164,98 (s); 131,74 (d); 128,56 (d); 128,32 (d); 127,44 (s); 86,58 (s); 79,02 (d); 74,36 (s); 52,25 (q); 26,27 (q); 23,63 (q); 18,28 (q). MS: 278 (0,3, M^{++} + 1), 219 (22), 187 (19), 160 (88), 132 (12), 106 (18), 105 (100), 104 (14), 77 (88), 58 (13), 57 (20), 51 (24), 43 (50). Anal. ber. für C₁₅H₁₉NO₄ (277,32): C 64,96, H 6,91, N 5,05; gef.: C 65,03, H 6,93, N 5.06.

(4 R, 5 R)-4,5-Dihydro-4-(1'-hydroxyethyl)-5-methyl-2-phenyloxazol-4-carbonsäure-methylester (5i). Nach AAV 4 wurden aus 1,23 g (5,63 mmol) trans-4 und 0,4 ml (7,08 mmol) Acetaldehyd 1,44 g (97%; ca. 60% ds, Gemisch von allen 4 Diastereoisomeren, (c)) erhalten. Nach Chromatographie (Et₂O/Pentan 1:1, dann 5:2) wurden 0,21 g (13,9%; >95% ds (c)) Hauptdiastereoisomeres 5i als weisse Kristalle isoliert. Schmp. 96,5–97,5°. $[\alpha]_{\text{D}}^{\text{RT}}$ = +18,5° (c = 0,92, CHCl₃). IR (CHCl₃): 3550m (br.), 2985m, 2959m, 1710s, 1641s, 1580w, 1450m, 1360m, 1090m, 1070s, 1045m, 692m. ¹H-NMR (CDCl₃): 8,18–7,92, 7,58–7,32 (2m, 5 arom. H); 5,04 (q, J = 6,3, H–C(5)); 4,29 (quint., J = 6,3, CH–C(4)); 3,76 (s, CH₃O); 2,70 (d, J = 6,3, OH); 1,39 (d, J = 6,3, CH₃-C(5)); 1,25 (d, J = 6,3, CH₃C-C(4)). ¹³C-NMR (CDCl₃): 172,84; 165,83; 131,84; 128,66; 128,36; 127,39; 83,99; 79,18; 70,38; 52,21; 17,53. MS: 219 (17), 187 (10), 160 (12), 114 (10), 105 (100), 77 (30). Anal. ber. für C₁₄H₁₇NO₄ (263,30): C 63,86, H 6,51, N 5,32; gef.: C 63,60, H 6,40, N 5,24.

(4S,5S)-4,5-Dihydro-4-(1'-hydroxybenzyl)-5-methyl-2-phenyloxazol-4-carbonsäure-methylester (ent-**5**). Nach*AAV*4 wurden aus 0,98 g (4,45 mmol)*cis*-**4**und 0,55 ml Benzaldehyd 1,32 g (91%; 70% ds (*a*))*ent*-**5**j als gelbes Öl erhalten. Nach Chromatographie (Et₂O/Pentan 1:1, dann 5:1) wurden 0,29 g (20%; >95% ds (*c*)) Neben- und 0,75 g (52%; >95% ds (*c*)) Hauptdiastereoisomer*ent*-**5**j erhalten. Das Nebendiastereoisomere wurde in CH₂Cl₂ und*ent*-**5**j in Et₂O/Pentan bei -30° umkristallisiert. Nebendiastereoisomer:*R* $_f(Et₂O/Pentan 1:1) 0,24. Schmp. 112,0-114,0°. (<math>\alpha$]_B^{TT} = +24,6° (*c* = 1,14, CHCl₃). IR (CHCl₃): 3520w (br.), 2960m, 1750m (sh), 1711s, 1643s, 1603w, 1581m, 1495m, 1451s, 1437m, 1381m, 1360m, 1350m, 1115m, 1096m, 1062s, 1050m (sh), 1029m, 933w, 883w. ¹H-NMR (CDCl₃): 8,06-7,15 (*m*, 10 arom. H); 5,25 (*d*, *J* = 5,7, H-C(1')); 5,12 (*q*, *J* = 6,3, H-C(5)); 3,60 (*s*, CH₃O); 3,43 (*d*, *J* = 5,7, OH); 1,40 (*d*, *J* = 6,3, CH₃-C(5)). ¹³C-NMR (CDCl₃): 17,59. MS: 326 (sichtbar, *M*⁺⁺ + 1), 219 (20, *M*⁺⁺ - 106), 187 (9), 160 (28), 114 (9), 106 (26), 105 (100), 77 (41), 51 (11). Anal. ber. für C₁₉H₁₉NO₄ (325,37): C 70,14, H 5,89, N 4,31; gef.: C 70,08, H 6,01, N 4,39.

ent-**5j**: $R_{\rm f}$ (Et₂O/Pentan 1:1) 0,07. Schmp. 85–88°. $[\alpha]_{\rm D}^{\rm RT}$ = +21,4° (c = 1,11, CHCl₃). IR (CHCl₃): 3610w (br.), 3510w (br.), 2960m, 1730s, 1644s, 1605w, 1583m, 1496m, 1454s, 1439m, 1382m, 1356s, 1342m (sh), 1291s, 1134m, 1095s, 1065s, 1050m (sh), 1030s, 950w, 911w, 896w. ¹H-NMR (CDCl₃): 8,06–7,20 (m, 10 arom. H); 5,05 (d, J = 9, H–C(1')); 4,88 (q, J = 6,3, H–C(5)); 3,75 (s, CH₃O); 3,66 (d, J = 9, OH); 1,34 (d, J = 6,3, CH₃–C(5)). ¹³C-NMR (CDCl₃): 172,01; 165,62; 138,91; 131,82; 128,59; 128,27; 128,06; 127,92; 127,56; 127,18; 85,08; 80,52; 78,16; 52,39; 17,23. MS: 326 (sichtbar, M^{++} + 1), 219 (M^{++} – 106, 9), 161 (12), 160 (100), 132 (13), 106 (27), 105 (64), 104 (12), 78 (6), 77 (47), 57 (23), 51 (15). Anal. ber. für C₁₉H₁₉NO₄ (325,37): C 70,14, H 5,89, N 4,31; gef.: C 70,20, H 5,81, N 4,32.

(4 R, 5 R)-4-Benzoyl-4,5-dihydro-5-methyl-2-phenyloxazol-4-carbonsäure-methylester (5k) [93]. Zu einer Lsg. von 0,78 ml (8,60 mmol) Oxalyl-chlorid in 9,5 ml CH₂Cl₂ wurden unter Ar bei -78° 1,3 ml (18,30 mmol) DMSO in 2 ml CH₂Cl₂ getropft. Nach 3 min Rühren wurde auf -15° aufgewärmt und eine Lsg. von 1,23 g (3,73 mmol, 70% ds) rohem (4*R*,5*R*)-4,5-Dihydro-4-(1'-hydroxybenzyl)-5-methyl-2-phenyloxazol-4-carbonsäure-methylester (5j; Synthese gleich wie für ent-5j) in 25 ml CH₂Cl₂ so zugetropft, dass die Temp. nicht über -10° stieg. Nach 20 min Rühren bei -20° wurden 2,7 ml (19,13 mmol) Et₃N zugegeben. Die trübe Lsg. wurde nach 15 min auf +10° aufgewärmt und in 30 ml H₂O gegossen. Die H₂O-Phase wurde mit 30 ml CH₂Cl₂ extrahiert, die vereinigte org. Phase mit je 50 ml ges. NaCl-, 1% HCl-, ges. NaHCO₃- und ges. NaCl-Lsg. gewaschen und getrocknet (MgSO₄). Nach dem Eindampfen und Trocknen (RT./0,01 Torr) wurden 1,29 g (quant.; > 95% ds (c)) 5k als gelbes Öi erhalten. Umkristallisation aus Et₂O/Pentan ergab 0,92 g (74,1% ausgehend von *trans*-4; > 95% ds (c)) 5k als farblose Kristalle. Schmp. 83,5-84,5°. [α]_B^{TT.} = +341,4° (c = 0,95, CHCl₃). Übrige physikalische Daten: identisch mit denen des Produktes aus *trans*-4 und Benzoyl-chlorid (s. unten).

(4S, 5R)-4-Benzoyl-4,5-dihydro-5-methyl-2-phenyloxazol-4-carbonsäure-methylester (**5k**). Nach AAV 2 wurden zu einer Enolat-Lsg. von 1,05 g (4,79 mmol) *trans*-4 0,83 ml (7,19 mmol) Benzoyl-chlorid in 3 ml THF getropft. Nach 1 h Rühren bei -78° wurde aufgearbeitet. Durch Chromatographie (Et₂O/Hexan 1:2, dann 1:1) wurde das Rohprodukt gereinigt, wobei 1,29 g (83,4%; > 95% ds (c)) **5k** als farblose Kristalle erhalten wurden. Schmp. 83,5-84,5°. [α] $_{D}^{BT}$ = +343,1° (c = 1,0, CHCl₃). IR (CHCl₃): 2980w, 1751s, 1726m, 1682s, 1631s, 1596m, 1576m, 1446s, 1330m, 1057m, 855w. ¹H-NMR (CDCl₃): 8,52-8,31, 8,12-7,96, 7,65-7,32 (3m, 10 arom. H); 5,90 (q, J = 6,3, H-C(5)); 3,68 (s, CH₃O); 1,42 (d, J = 6,3, CH₃-C(5)). ¹³C-NMR (CDCl₃): 190,70 (s); 169,51 (s); 165,81 (s); 134,78 (s); 133,40 (d); 132,05 (d); 130,26 (d); 128,85 (d); 128,45 (d); 128,27 (d); 127,02 (d); 87,32 (s); 78,91 (d);

52,59(q); 16,35(q). MS: 323(0,6, M^{++}), 218(24), 187(16), 176(25), 106(8), 105(100), 77(44), 51(9). Anal. ber. für C₁₉H₁₇NO₄ (323,35): C 70,58, H 5,30, N 4,33; gef.: C 70,43, H 5,27, N 4,26.

(2R, 3R)-2-Methylallothreonin-methylester-hydrochlorid (Methylester von 6 · HCl). Innert 12 h wurden 7,52 g (32,24 mmol) **5b** in 50 ml 6N HCl unter Rückfluss gekocht. Nach dem Abkühlen wurde die Lsg. mit 50 ml H₂O verdünnt und 2× mit 100 ml Et₂O ausgeschüttelt. Die H₂O-Phase wurde eingedampft und bei 50°/0,05 Torr getrocknet. Der braune Rückstand wurde in 50 ml MeOH gelöst und bei 0° mit HCl-Gas gesättigt. Die Lsg. wurde dans 2 h unter Rückfluss gekocht, eingedampft und bei 30°/0,05 Torr getrocknet. Nach Lösen in MeOH wurde dieses Verfahren noch einmal wiederholt. Das trockene Produkt wurde aus EtOH (95%)/Et₂O umkristallisiert, wobei 4,76 g (80,4%; 95% ds (a)) Methylester von 6 · HCl als farblose diastereoisomerenreine Kristalle. Schmp. 159,5–160,5°. [a] $B^{T} = -1,5^{\circ}$, [a] $R^{T} = -7,5^{\circ}$ ($c = 1,1, H_2O$). IR (KBr): 3700–2200s (br.), 1739s, 1594m, 1505m, 1276m, 1260s, 1225m, 1166m, 1108s, 1092m. ¹H-NMR (CD₃OD): 4,83 (s, NH₃⁺, OH); 3,97 (g, J = 6,6, H-C(3)); 3,83 (s, CH₃O; 1,55 (s, CH₃-C(2)); 1,22 (d, J = 6,6, 3H-C(4)). ¹³C-NMR (CD₃OD): 171,28; 70,64; 65,40; 53,75; 20,16; 18,18. MS: 149 (1, $M^{++} + 1 - 35$), 103 (47), 102 (100), 89 (17), 88 (60), 71 (17), 70 (23), 43 (44), 42 (100), 36 (43). Anal. ber. für C₆H₁₄CINO₃ (183,64): C 39,24, H 7,68, N 7,63; gef.: C 39,04, H 7,55, N 7,57.

(2 R, 3 R)-2-Methylallothreonin (6). Während 16 h wurden 8,80 g (37,74 mmol) rohes **5b** in 50 ml 6N HCl unter Rückfluss gekocht. Nach dem Abkühlen wurde mit 50 ml H₂O verdünnt und mit 100 ml Et₂O gewaschen. Nachdem die H₂O-Phase eingedampft und **6** · HCl nach *AAV* 5 mit 150 g Ionentauscher in die zwitterionische Form überführt worden war, wurden 4,74 g (94,3%; 91% ds (*a*)) **6** isoliert. Nach Umkristallisation aus H₂O/EtOH wurden 3,50 g (69,7%; > 98% ds (*c*)) diastereosiomerenreines **6** als farblose Kristalle erhalten. Schmp. 266,0– 267,0° (Zers.). [α]^{**D**T}₀ = -13,1° (*c* = 0,97, H₂O): 91% ds; [α]^{**D**T}₀ = -12,3° (*c* = 0,98, H₂O). IR (KBr): 3680–2800s (br.), 2800–2150m (br.), 2150–1850w (br.), 1700–1500s (br.), 1408s, 1345s, 1330s, 1103s, 590m. ¹H-NMR (D₂O, HDO = 4,80 ppm): 4,07 (*q*, *J* = 7,2, H–C(3)); 1,51 (*s*, CH₃–C(2)); 1,21 (*d*, *J* = 7,2, 3 H–C(4)). ¹³C-NMR (CD₃OD): 175,54; 70,32; 66,11; 20,91; 17,93. MS: 134 (12, *M*⁺⁺ + 1), 89 (68), 88 (71), 72 (12), 71 (46), 70 (22), 45 (16), 43 (100), 42 (80). Anal. ber. für C₅H₁₁NO₃ (133,15): C 45,10, H 8,33, N 10,52; gef.: C 44,96, H 8,36, N 10,42.

(2S,3S)-2-Methylallothreonin (ent-6). Ausgehend von 0,10 g (0,59 mmol) ent-5b wurden nach gleichem Verfahren wie bei 5b 0,076 g (95,9%; 91% ds (a) ent-6 erhalten. $[\alpha]_D^{RT} = +12,3^{\circ}$ (c = 0,95, H₂O). Übrige Daten: identisch mit denen von 6 (s. oben).

(2R)-2-Amino-2-methylbutansäure (= (2R)-Isovalin (7)) [94]. Im geschlossenen Bombenrohr wurden 1,1 g (4,24 mmol) 6·HI⁶⁰) und 0,3 g roter P in 10 ml 65 % HI-Lsg. 5,5 h auf 160° erhitzt. Die H₂O-Phase wurde mit 15 ml H₂O verdünnt, 3× mit 30 ml Et₂O gewaschen, eingedampft und nach AAV 5 entsalzt. Es wurden 0,30 g 6/7 1:1 erhalten. Nach Chromatographie (CH₃OH/CH₂Cl₂/konz. NH₃ 5:5:1) wurde eine nach ¹H-NMR reine Probe 7 isoliert. Schmp. > 250° (Zers.). [α]B^T = -10,6° (c = 0,34, H₂O) ([95]: [α]B^T = -11,28° (c = 5, H₂O); [96]: [α]B^I = -11,9° (c = 0,786, H₂O). IR (KBr): 3440m (br.), 3300-2200s (br.), 1605s (br.), 1459m, 1401s, 1368m, 1296m. ¹H-NMR (CD₃OD): 2,17-1,68 (m, 2 H-C(3)); 1,51 (s,CH₃-C(2)); 1,02 (t, J = 6, 6, 3 H-C(4)).

Serin. – AAV6 (mit Cosolvens). Zu einer –78° kalten Lsg. von 5,5 mmol Li(i-Pr)₂N in 33 ml (für HMPT) bzw. 28 ml (für DMPU) THF/Hexan 10:1 wurden 6 ml HMPT bzw. 8 ml DMPU getropft. Nach 10 min Rühren bei -78° wurden innert ca. 5 min 5 mmol Oxazolidin **9b** in 6 ml THF getropft. Die schwach gelbe Lsg. wurde nach 10 min Rühren bei –78° mit 12,5 mmol Elektrophil versetzt. Nach 10 min wurde das Trockeneis aus dem Kühlbad entfernt und innert 12 h auf ca. 0° aufgewärmt. Die Reaktionslsg. wurde in 100 ml halbges. NH₄Cl-Lsg. und 350 ml Et₂O aufgenommen. Die org. Phase wurde 4× mit 80 ml dest. H₂O gewaschen, getrocknet (MgSO₄) und eingedampft.

(2R,4S)-2-(tert-Butyl)-3-formyl-oxazolidin-4-carbonsäure-methylester (9b). Zu 62,2 g (400 mmol) rohem, fein pulverisiertem L-Serin-methylester-hydrochlorid in 500 ml Pentan wurden 61,2 ml (440 mmol) Et₃N und 88,0 ml (800 mmol) Pivalaldehyd getropft. Während 16 h wurde die Mischung unter dem H₂O-Abscheider gekocht (bis sich kein H₂O mehr abschied). Das Et₃NHCl wurde abfiltriert, 3× mit 150 ml Et₂O gewaschen und das Filtrat i. RV. eingedampft. Es wurden 60,6 g (81%) rohes 9a/10a erhalten, (1:1 Gemisch). Zum 9a/10a in 250 ml Et₂O wurden bei 0° 72 ml Ameisensäure-essigsäure-anhydrid getropft (Herstellung: [97]). Es wurde 6 h bei 0° gerührt, dann auf 60 g Eis/100 ml ges. NaHCO₃-Lsg. gegossen, mit zusätzlich 500 ml Et₂O extrahiert, die org. Phase mit 4× 70 ml ges. NaHCO₃-Lsg. gewaschen, getrocknet (MgSO₄), eingedampft und der Rückstand bei 86–90°/3·10⁻⁵ Torr (Bad: 120°) destilliert: 62,4 g (90%; > 95% ds (b)) 9b als farbloses Öl. Umkristallisation aus Et₂O/Pentan ergab 58,3 g (84%) laut Kapillar-GC diastereoisomerenreines 9b als farblose Kristalle. Schmp. 58,5–60,0°. [α]_R^{T.} = -46,5° (c = 1,0, CHCl₃). IR (CHCl₃): 2970m, 2920w, 2890w, 1746s, 1680s, 1485w, 1470w, 1441w, 1405w,

⁶⁰) Das Hydroiodid wurde aus 0,56 g 6 und 56 % HI-Lsg. nach Eindampfen und Trocknen über Nacht (RT./0,01 Torr) erhalten.

1381*m*, 1371*m*, 1109*m*, 1071*w*, 1040*w*, 1020*w*, 955*w*, 943*w*, 894*w*. ¹H-NMR (CDCl₃, 300 MHz, Rotamerenverhältnis 9:1): 8,48, 8,40 (2*s*, CHO); 5,19, 4,89 (2*s*, H–C(2)); 4,93 (*dd*, J = 7, 3, H–C(4)); 4,56, 4,49 (2*dd*, J = 3, 9, H–C(5)); 4,03 (*dd*, J = 7, 9, H–C(5)); 3,81, 3,77 (2*s*, CH₃O); 0,98, 0,91 (2*s*, (CH₃)₃C). Positiver NOE bei Einstrahlung der *t*-Bu-Frequenz auf H_{cis}–C(5), CH₃COO, H–C(2) und CHO (300-MHz-Spektrometer mit Differenz-Registrierung). ¹³C-NMR (CDCl₃, Rotamerenverhältnis 9:1): 169,70; 164,21, 162,40; 97,43, 95,89; 68,42, 67,07; 58,85, 56,42; 52,51; 35,60, 36,24; 25,38, 24,86. MS: 158 (19), 131 (6), 130 (100), 70 (33), 42 (11), 41 (9). Anal. ber. für C₁₀H₁₇NO₄ (215,25): C 55,80, H 7,96, N 6,51; gef.: C 55,75, H 7,79, N 6,47.

Diastereoisomer **10b** wurde nach Chromatographie Et₂O/Pentan der Mutterlauge isoliert (94,5% ds (b)). Schmp. 44,0-47,0°. $[\alpha]_{D}^{RT.} = -149,1°$ (c = 1,03, CHCl₃). IR (CHCl₃): 2975*m*, 2915*m*, 2880*w*, 1755*s*, 1671*s*, 1483*w*, 1441*w*, 1404*m*, 1381*s*, 1371*s*, 1110*m*, 1070*w*, 1035*w*, 955*w*, 930*w*, 886*w*. ¹H-NMR (CDCl₃, 300 MHz; Rotamerenverhältnis 95:5): 8,41, 8,31 (2*s*, CHO); 5,20, 5,07 (2*s*, H–C(2)); 4,56 (*dd*, J = 4, 7, H–C(4) oder H–C(5)); 4,37 (*dd*, J = 7, 9, H–C(4) oder H–C(5)); 4,05 (*dd*, J = 4, 9, H–C(4) oder H–C(5)); 3,78, 3,76 (2*s*, CH₃O); 0,99, 0,96 (2*s*, (CH₃)₃C). Positiver NOE bei Einstrahlung der *t*-Bu-Frequenz auf H–C(5), H–C(4), H–C(2) und CHO (300-MHz-Spektrometer mit Differenz-Registrierung). MS: 158 (18), 131 (6), 130 (100), 70 (38), 57 (6), 43 (6), 42 (13), 41 (9).

 $(2R,4S)-2-(tert-Butyl)-3-formyl(4-^2H) oxazolidin-4-carbonsäure-methylester (11a) und <math>(2R/S,4S)-2-(tert-Butyl)-(4-^2H) oxazolidin-4-carbonsäure-methylester (11a) mit NH statt NCHO; Diastereoisomerengemisch). Zu einer --78° kalten Lsg. von 4,40 mmol Li(i-Pr)₂N (1,05 Äquiv. BuLi, 1,3 Äquiv. (i-Pr)₂NH) in 33 ml THF/Hexan 10:1 wurden innert ca. 5 min 0,90 g (4,19 mmol) 9b in 6 ml THF getropft. Nach 10 min Rühren bei -78° wurden 6,1 ml (9,65 mmol) 1,58M BuLi zugetropft; 5 min später wurden 1,4 ml (33,56 mmol) CH₃OD in 3 ml THF zugegeben, Die Lsg. wurde auf 80 ml halbges. NaHCO₃-Lsg. gegossen und mit 350 ml Et₂O extrahiert, die org. Phase getrocknet (Na₂SO₄) und eingedampft. Im Kugelrohrofen wurden bei 95°/0,05 Torr 0,42 g (53%) 11a (NH statt NCHO)⁶¹) und dann bei 150°/0,01 Torr 0,10 g (11%; 0,76D laut MS; > 98% ds (b)) 11a abdestilliert.$

11a (NH statt NCHO): Sdp. 95°/0,05 Torr. ¹H-NMR (CDCl₃, Diastereoisomerenverhältnis *ca*. 6:4): 4,21, 3,95 (2*s*, H–C(2)); 4,08–3,50 (*m*, 2 H–C(5)); 3,63, 3,61 (2*s*, CH₃O); 2,38 (br. *s*, NH); 0,88, 0,79 (2*s*, (CH₃)₃C).

11a: Sdp. $130^{\circ}/2 \cdot 10^{-5}$ Torr. $[\alpha]_{B}^{T.} = -45,6^{\circ}$ (c = 1,04, CHCl₃) ([54]: $[\alpha]_{D}^{RT.} = -46,5^{\circ}$ (c = 0,99, CHCl₃)). IR (CHCl₃): 2970*m*, 2915*m*, 2885*m*, 1745*s*, 1679*s*, 1441*w*, 1405*w*, 1380*m* (sh), 1370*s*, 1347*m*, 1306*m* (sh), 1295*m*, 1144*w*, 1092*m*, 1040*w*, 968*w*, 927*w*, 881*w*, 862*w*. ¹H-NMR (CDCl₃, Rotamerenverhältnis 9:1): 8,48, 8,41 (2*s*, CHO); 5,15, 4,83 (2*s*, H-C(2)); 4,45 (*d*, J = 9, H-C(5)); 4,01 (*d*, J = 9, H-C(5)); 3,73 (*s*, CH₃O); 0,97, 0,91 (2*s*, (CH₃)₃C). MS: 185 (0,4, $M^{+^{+}} - 31$), 159 (18), 132 (7), 131 (100), 130 (27), 71 (36), 70 (11), 57 (8), 43 (13), 41 (12). Anal. ber. für C₁₀H₁₆DNO₄ (216,25): C 55,54, H 8,39, N 6,48; gef.: C 55,48, H 8,64, N 6,51.

(2R,4S)-2-(tert-Butyl)-3-formyl-4-methyloxazolidin-4-carbonsäure-methylester (11b). Nach AAV 6 wurden aus 2,04 g (9,46 mmol) 9b und 1,5 ml (23,66 mmol) MeI in 43 ml THF/Hexan 6:1 und 6 ml HMPT nach Kugelrohrdestillation 1,48 g (68%; > 98% ds (b)) 11b erhalten. Sdp. 125°/2·10⁻⁵ Torr. [α]_B^{RT.} = -23,1° (c = 0,9, CDCl₃). IR (CHCl₃): 2975m, 2920w, 2880w, 1745s, 1676s, 1405w, 1385m (sh), 1370m, 1350m, 1303m, 1146m, 1121w, 1080w, 968w. ¹H-NMR (CDCl₃, Rotamerenverhältnis 55:45): 8,51, 8,40 (2s, CHO); 5,29, 4,93 (2s, H-C(2)); 4,67, 4,30 (2d, J = 9, H-C(5)); 3,86-3,56 (m, H-C(5)); 3,75, 3,74 (2s, CH₃O); 1,69 (s, CH₃-C(4)); 1,04, 0,91 (2s, (CH₃)₃C). ¹H-NMR ((D₆)DMSO, RT., 300 MHz; Rotamerenverhältnis 1:1): 8,45, 8,25 (2s, CHO); 5,12, 5,04 (2s, H-C(2)); 4,50, 4,16 und 3,82 (3d, J = 9, 1,5 H, H-C(5)); 3,76-3,64 (m, 0,5 H, H-C(5)); 3,71, 3,65 (2s, CH₃O); 1,65, 1,56 (2s, CH₃-C(4)); 0,97, 0,84 (2s, (CH₃)₃C). ¹H-NMR ((D₆)DMSO, 100°): 8,38 (s, CHO); 5,09 (s, H-C(2)); 4,38 (br. s, H-C(5)); 3,73 (d, J = 9, H-C(5)); 1,61 (s, CH₃-C(4)); 0,91 (s, (CH₃)₃C). ¹³C-NMR (CDCl₃, Rotamerengemisch 6:4): 172,31, 171,42; 162,44, 159,69; 97,21, 96,64; 76,45; 74,93; 65,11, 65,014; 52,87, 52,63; 37,94, 37,25; 25,87, 25,67; 24,03, 20,11. MS: 214 (0,6, M^{+*} - 15), 172 (32), 145 (11), 144 (100), 84 (73), 57 (17), 56 (12), 42 (15), 41 (17). Anal. ber. für C₁₁H₁₉NO₄ (229,28): C 57,63, H 8,35, N 6,11; gef.: C 57,72, H 8,56, N 5,92.

(2 R,4 S)-2-(tert-Butyl)-4-ethyl-2-formyloxazolidin-4-carbonsäure-methylester (11c). Nach AAV 6 (mit DMPU) wurden aus 1,02 g (4,74 mmol) 9b und 0,95 ml (11,85 mmol) EtI nach Kugelrohrdestillation 0,61 g (53%; > 98% ds (b)) 11c als farbloses Öl erhalten. Sdp. 130°/6·10⁻⁶ Torr. $[\alpha]_{\text{B}}^{\text{RT}} = -28,1^{\circ}$ (c = 1,47, CHCl₃). IR (CHCl₃): 2980m, 2920m, 2890m, 1745s, 1676s, 1482w, 1462w, 1440w, 1404w, 1358s, 1335m, 1268m, 1230m, 1216m, 1090w, 1072w, 1039w, 970w, 890w. ¹H-NMR (CDCl₃, Rotamerengemisch 7:3): 8,52, 8,48 (2s, CHO); 5,34, 4,91 (2s, H-C(2)); 4,64, 4,32 (2d, J = 9, H-C(5)); 4,04-3,71 (m, H-C(5)); 3,80, 3,72 (2s, CH₃O); 2,73–1,55 (m, CH₃CH₂); 1,06–0,77 (m, CH₃CH₂); 1,04, 0,91 (2s, (CH₃)₃C). ¹³C-NMR (CDCl₃, Rotamerengemisch 76:24): 172,06, 171,44 (2s); 162,44, 159,51 (2d); 98,52, 96,96 (2d); 74,36, 73,09 (2t); 68,89, 68,51 (2s); 52,77, 52,44 (2q); 38,33, 37,51 (2s);

⁶¹) Wegen der Hydrolyseempfindlichkeit und da 2 Diastereoisomere von 11a (NH statt NCHO) vorlagen, wurden die Diastereoselektivität der Deuterierung und die Deuterium-Einbaurate erst auf der Stufe des (2-²H)Serins (8a) bestimmt.

31,12, 25,24 (2*t*); 25,98, 25,59 (2*q*); 7,95, 7,67 (2*q*). MS: 228 (0,5, $M^{++} - 15$), 186 (17), 158 (100), 114 (5), 99 (6), 98 (48), 71 (8), 70 (7), 57 (5), 43 (12), 42 (7), 41 (11). Anal. ber. für C₁₂H₂₁NO₄ (243,31): C 59,24, H 8,70, N 5,76; gef.: C 59,30, H 8,81, N 5,79.

(2R,4S)-4-Allyl-2-(tert-butyl)-3-formyloxazolidin-4-carbonsäure-methylester (11d). Nach AAV 6 (mit HMPT) wurden aus 0,95 g (4,41 mmol) **9b** und 0,96 ml (11,04 mmol) Allylbromid nach Kugelrohrdestillation 0,64 g (57%; > 98% ds (b)) **11d** als farbloses Öl erhalten. Sdp. 140°/3·10⁻⁵ Torr. [α]_B^{T.} = -7,8° (c = 0,85, CHCl₃). IR (CHCl₃): 2960m, 2910m, 2875m, 1740s, 1670s, 1477w, 1436w, 1399w, 1376m (sh), 1365m, 1350s, 1319m, 1296m, 1126m, 1097w, 990w, 930m, 886w. ¹H-NMR (CDCl₃, Rotamerenverhältnis 1:1): 8,56, 8,40 (2s, CHO); 6,05–5,05 (m, 3 olef. H); 4,93–3,78 (m, H–C(2), 2 H–C(5)); 3,80, 3,78 (2s, CH₃O); 3,41–2,51 (m, CH₂=CHCH₂); 1,05, 0,92 (2s, (CH₃)₃C). MS: 240 (0,4, M^{+*} – 15), 198 (15), 170 (100), 110 (33), 82 (11), 55 (12), 41 (23). Anal. ber. für C₁₃H₂₁NO₄ (255,32): C 61,16, H 8,29, N 5,49; gef.: C 61,12, H 8,29, N 5,49.

(2R,4S)-4-Benzyl-2-(tert-butyl)-3-formyloxazolidin-4-carbonsäure-methylester (11e). Nach AAV 6 (mit DMPU) wurden aus 1,28 g (5,94 mmol) 9b und 1,76 ml (14,84 mmol) Benzylbromid nach Umkristallisation aus CH₂Cl₂/Et₂O 0,95 g (52%; > 98% ds (b)) 11e als farblose Kristalle erhalten. Schmp. 126,0–130,0°. [α]_B^{T.} = +32,4° (c = 1,18, CHCl₃). IR (CHCl₃): 2960m, 1740s, 1670s, 1434w, 1400w, 1376w (sh), 1364m (sh), 1347m, 1129m, 1062w, 1032w, 980w, 964w, 885w. ¹H-NMR (CDCl₃, Rotamerengemisch 55:45): 8,69, 8,46 (2s, CHO); 7,43–6,98 (m, 5 arom. H); 5,27 (s, 0,5 H, H–C(2)); 4,49–2,99 (m, 4,5 H, PhCH₂, 2 H–C(5), H–C(2)); 3,78, 3,74 (2s, CH₃O); 0,95, 0,89 (2s, (CH₃)₃C). ¹³C-NMR (CDCl₃, Rotamerengemisch 6:4): 171,14; 162,39, 159,84; 135,49, 133,78; 130,46, 129,64; 128,78, 128,35; 127,86, 127,14; 97,79, 97,02; 73,14, 72,55; 68,58; 52,63; 44,19, 38,27; 36,90, 36,72; 26,16, 25,62. MS: 290 (0,6, M^{+-} – 15), 248 (60), 221 (14), 220 (100), 160 (15), 115 (9), 91 (47), 57 (9), 41 (9). Anal. ber. für C₁₇H₂₃NO₄ (305,38): C 66,86, H 7,59, N 4,59; gef.: C 66,83, H 7,63, N 4,54.

(2R,4R)-2-(tert-Butyl)-4-(1'-hydroxy-1'-methylethyl)oxazolidin-4-carbonsäure-methylester (11f). Zu einer -78° kalten Lsg. von 5,01 mmol Li(i-Pr)₂N in 33 ml THF/Hexan 10:1 wurden innert ca. 5 min 0,98 g (4,56 mmol) **9b** in 6 ml THF gegeben. Nach 15 min Rühren bei -78° wurden 0,84 ml (11,39 mmol) Aceton in die rote Lsg. getropft. Während 3 h wurde bei -78° Rühren gelassen, dann wurden 0,91 ml (15,95 mmol) AcOH in 3 ml Et₂O zu der immer noch leicht orangen Lsg. gespritzt. Die nun farblose Lsg. wurde auf 80 ml halbges. NaHCO₃-Lsg. gegossen und mit 350 ml Et₂O extrahiert. Nach dem Trocknen (Na₂SO₄) wurde abgedampft. Umkristallisation aus CH₂Cl₂/Et₂O ergab 0,75 g (58%) **11f** als farblose Kristalle⁶²). Schmp. 108,5-110,0°. [α]_B^T = -65,7 (c = 0,84, CHCi₃). IR (CHCi₃): 3310m (br.), 2980m, 2876w (sh), 1750m (sh), 1731s, 1660s, 1406m, 1381s, 1369m, 1340m, 1288m, 1149s, 1130s, 1041w, 972m. ¹H-NMR (CDCl₃, Rotamerenverhältnis ca. 9:1): 9,01, 8,56 (2s, CHO); 6,37 (br. s, 0H); 5,42, 4,86 (2s, H-C(2)); 4,59 (d, J = 10, H-C(5)); 3,83, 3,75 (2s, CH₃O); 3,68 (d, J = 10, H-C(5)); 1,29 (br. s, 2 CH₃); 1,01, 0,95 (2s, (CH₃)₃O. ¹³C-NMR (CDCl₃, Rotamerenverhältnis ca. 9:1): 169,96; 167,60, 161,26; 99,31; 79,44; 72,70; 72,26; 52,48; 36,66; 26,71, 25,82; 25,57. MS: 274 (2, M⁺⁺ + 1), 216 (13), 188 (84), 170 (26), 130 (19), 129 (70), 114 (20), 110 (100), 101 (24), 98 (12), 97 (42), 70 (13), 59 (30), 57 (23), 43 (27), 42 (29), 41 (28). Anal. ber. für C₁₃H₂₃NO₅ (273,32): C 57,12, H 8,48, N 5,13; gef.: C 57,26, H 8,55, N 4,93.

(2R, 4R)-4-Benzoyl-2-(tert-butyl)oxazolidin-4-carbonsäure-methylester (11g). Zu einer -78° kalten Lsg. von 6,48 mmol Li(i-Pr)₂N in 33 ml THF/Hexan 10:1 wurden innert *ca*. 5 min 1,27 g (5,89 mmol) **9b** in 6 ml THF getropft (Rotfärbung). Nach 15 min Rühren bei -78° wurden 0,82 ml (7,07 mmol) Benzoylchlorid zugegeben. Nach weiteren 90 min Rühren bei -78° wurde die leicht gelbe Lsg. in 100 ml halbges. NH₄Cl-Lsg. und 350 ml Et₂O aufgenommen und die org. Phase getrocknet (MgSO₄) und eingedampft. Nach Chromatographie (Et₂O/Pentan 1:2) wurden 1,32 g (70,3%; 95% ds (*a*)) **11g** als farbloses, hochviskoses Öl erhalten. $[\alpha]_{B}^{RT}$ = +55,5° (*c* = 1,09, CHCl₃). IR (CHCl₃): 2980m, 1752s, 1690s, 1604w, 1344m, 1120m, 965w. ¹H-NMR (CDCl₃, Rotamerengemisch 3:1): 8,31 (*s*, CHO); 7,98-7,29 (*m*, 5 arom. H); 5,64, 5,28 (2*s*, H-C(2)); 5,12, 4,52 (*AB*, *J* = 10,5, 2 H-C(5)); 4,90, 4,53 (*AB*, *J* = 9, 2 H-C(5)); 3,85, 3,79 (2*s*, CH₃O); 1,00 (*s*, (CH₃); 129,70, 128,55 (2*d*); 128,92, 128,09 (2*d*); 98,88, 97,54 (2*d*); 75,25, 74,34 (2*s*); 72,80 (*t*); 53,70, 53,05 (2*q*); 38,78, 37,29 (2*s*); 26,07, 25,17 (2*q*). MS: 304 (0,3, M⁺⁺ - 15), 234 (46), 105 (100), 77 (33), 41 (11). Anal. ber. für C₁₇H₂₁NO₅ (319,36): C 63,94, H 6,63, N 4,39; gef.: C 64,24, H 6,69, N 4,46.

(2S)- $(2-^2H)$ Serin (8a). Während 2 h wurden 0,42 g (2,22 mmol) 11a (NH statt NCHO) in 20 ml 6n HCl bei 120° (Badtemp.) gekocht. Das Hydrolysat wurde mit 20 ml H₂O verdünnt, mit 50 ml Et₂O gewaschen und eingedampft. Der Rückstand wurde nach AAV 5 in die zwitterionische Form überführt: 0,21 g (89%; 0,95D laut MS) 8a als farblose Kristalle. Schmp. 215,0-225,0° (Zers.; L-Ser (Fluka): 215-225°). $[\alpha]_D^{RT} = +12,2°$, $[\alpha]_{546}^{RT} = +15,2°$ (c = 1,17, 5n HCl; L-Ser: $[\alpha]_D^{22} = +13,4°, [\alpha]_{546}^{RT} = +16,2°$ (c = 1,16, 5n HCl)). IR (KBr): 3700-2300s (br.), 3440s (br.), 1595s, 1500m, 1470s, 1410s, 1382m (sh), 1362m (sh), 1274m, 1209w, 1172w, 1124w, 1050s, 1274m, 1209w, 1172w, 1214w, 1050s, 1274m, 1209w, 1172w, 1214w, 1214w, 1209w, 1172w, 1214w, 1209w, 1172w, 1214w, 1209w, 1172w, 1214w, 121

⁶²) Die Kristalle von 11f enthielten 0,1 Äquiv. Et₂O (laut ¹H-NMR-Spektrum, Mikroanalyse).

950w, 895w, 872w, 804w, 767w, 592m, 515m. ¹H-NMR (D₂O, HDO = 4,80 ppm): 3,99 (br. *s*, 2 H–C(3)). MS: 107 (1, M^{++} + 1), 77 (10), 76 (47), 75 (71), 62 (19), 61 (100), 60 (16), 58 (28), 47 (9), 44 (22), 43 (50), 42 (14), 31 (27), 30 (32), 29 (57). Anal. ber. für C₃H₆DNO₃ (106,09): C 33,96, H 7,60, N 13,20; gef.: C 34,08, H 7,60, N 12,95.

(2S)-2-Methylserin (8b). Während 1,5 h wurden 0,61 g (2,68 mmol) reines 11b in 20 ml 6N HCl bei 120° (Badtemp.) gekocht. Das Hydrolysat wurde wie **8a** · HCl behandelt. Trocknen bei 50° (Kugelrohrofentemp.)/ $1 \cdot 10^{-3}$ Torr (5 h) ergab 0,295 g (93%) farbloses **8b**. Schmp. 250,0–260,0° (Zers.; [47]: 235–240°; [49]; 255–260°; [48]: 264°). $[\alpha]_D^{BT.} = +6,2°$ ($c = 1,12, H_2O$), nach Umkristallisation aus H₂O/EtOH/Et₂O: $[\alpha]_D^{BT.} = +6,5°$ ($c = 0,8, H_2O$; [24b]: $[\alpha]_D^{25.5} = +6,3°$ ($c = 1, H_2O$); [49]: $[\alpha]_D^{25} = +6,0°$ (2% Lsg. in 0,1M Nitrilatris(ethanol) · HCl-Puffer, pH 7,0); [50]: $[\alpha]_D = +6°$ ($c = 2, H_2O$); [48]: $[\alpha]_D^{10} = +4,7°$ ($c = 0,89, H_2O$). IR (KBr): 3410s (br.), 3110s (br.), 2480m (br.), 2080w (br.), 1650s, 1615s, 1570s, 1536s, 1464s, 1410s, 1375m, 1354s, 1279m, 1255m, 1155m, 1070s, 1060s, 976w, 932w, 886w, 810w, 792w. ¹H-NMR (D₂O, HDO = 4,80 ppm): 3,95, 3,70 (*AB*, J = 12, 2 H-C(3)); 1,46 (s, CH₃-C(2)). MS: 120 (0,4, $M^{++} + 1$), 89 (10), 88 (100, $M^{++} - 31$), 74 (54), 57 (11); 56 (22), 43 (14), 42 (75). Anal. ber. für C₄H₉NO₃ (119,12): C 40,33, H 7,62, N 11,76; gef.: C 40,27, H 7,60, N 11,63.

Glycerinsäure (= 2,3-Dihydroxypropansäure). – AAV7 (ohne Cosolvens). Zu einer auf –78° gekühlten Lsg. von 5,5 mmol Li(i-Pr)₂N in 22 ml THF wurden 5 mmol Thioester 13a in 8 ml THF (RT.) getropft. Nach 1 h Rühren bei –78° wurde 6 mmol Elektrophil zugegeben und weitergerührt. Es wurden 17,5 mmol AcOH in 5 ml Et₂O zugetropft. Die Reaktionslsg. wurde in 120 ml Et₂O gegossen und mit 80 ml halbges. NaHCO₃-Lsg. gewaschen. Die org. Phase wurde getrocknet (MgSO₄) und das Lsgm. abgedampft. Alle in diesem Teil der Arbeit angegebenen Diastereoselektivitäten wurden ¹³C-NMR-spektroskopisch (c) ermittelt. Wenn bei den spez. Drehungen keine Temp. angegeben ist, wurde bei RT. gemessen.

(2R,4S)-2-(tert-Butyl)-1,3-dioxolan-4-carbonthiosäure-S-(tert-butyl)ester (13a). Die rohe L-Glycerinsäure (0,5 mol) wurde in 150 ml MeOH, 10 ml konz. HCl-Lsg. und 400 ml Pivalaldehyd-dimethyl-acetal gelöst. Die Lsg. wurde 24 h bei RT. gerührt. Nach Filtrierung wurde das Lsgm. abdestilliert (Wasserbad bei 30°). Das rohe Öl bestand aus L-Glycerinsäuremethylester und schon einem Teil des cyclischen Acetals. Es wurde mit 150 ml Pivalaldehyd-dimethyl-acetal und einer Spatelspitze TsOH · H₂O in 300 ml CH₂Cl₂ gelöst. Die Lsg. wurde 24 h bei RT. gerührt. Zur Neutralisierung wurde eine Lsg. von 7,5 g NaOMe in 75 ml MeOH zugegeben (leicht alkalische Reaktion). Dann wurde das Lsgm.-Gemisch abgedampft, der Rückstand auf Eis/NaHCO3 gegossen, die H2O-Phase 3× mit 150 ml Et₂O extrahiert, die vereinigte Et₂O-Phase mit ges. NaCl-Lsg. gewaschen, getrocknet (MgSO₄) und eingedampft. Der Rückstand wurde sehr lange bei 0,1 Torr/RT. getrocknet, um das Pivalaldehyd-dimethyl-acetal zu entfernen: 77,1 g gelbes Öl. Kugelrohrdestillation (90°/0,1 Torr) ergab 68,6 g (72,8%, 58% ds) (4S)-2-(tert-Butyl)dioxolan-4-carbonsäure-methylester als farbloses Öl. Zu einer Lsg. von 20,5 ml (21,2 mmol) Me₃Al in 400 ml trockenem CH₂Cl₂ wurde langsam bei -15° 24,1 ml (21,2 mmol) 1,1-Dimethylethanthiol unter Ar getropft. Das Gemisch wurde bis auf RT. aufwärmen gelassen. Dann wurde eine Lsg. von 20 g (10,6 mmol) (2R,4S)-2-(tert-Butyl)dioxolan-4-carbonsäure-methylester in 50 ml CH₂Cl₂ zugetropft. Die Lsg. wurde noch 24 h gerührt (→gelb-orange). Nach Zugabe von 100 ml Et₂O wurde das Me₃Al bei 0° mit 1N HCl (ca. 5 ml) vorsichtig zerstört. Das Gemisch wurde mit Et₂O verdünnt, dann mit 400 ml, 2× mit 300 ml 5% NaOH-Lsg. und dann mit 400 ml ges. NaCl-Lsg. gewaschen. Nach der Trocknung (MgSO4) wurde das Lsgm. abdestilliert: 24,5 g gelbes Öl. Chromatographie (Et₂O/Pentan 1:100) ergab 7,5 g (28,6%) kristallines trans-Isomeres 13a und 4,7 g (17,9%) flüssiges cis-Isomeres 13b. Mit kürzeren Reaktionszeiten wurden bessere Selektivitäten erzielt, dagegen verminderten sich die Ausbeuten. 13a: Schmp. 27,5–29,5°. $[\alpha]_D^{25} = -62^\circ$ (c = 0,95, CHCl₃). IR (CHCl₃): 2970m, 1660s, 1365m, 1105s. ¹H-NMR (CDCl₃): 4,78 (s, H--C(2)); 4,44, 4,26, 3,85 (ABC, $J_{AB} = 6$, $J_{AC} = 5$, $J_{BC} = 6$, CH₂(5), H-C(4)); 1,46 (s, (CH₃)₃CS); 0,95 (s, (CH₃)₃C-C(2)). ¹³C-NMR (CDCl₃): 112,03; 80,75; 68,96; 47,38; 34,39; 29,85; 24,18. MS: 246 (21,6, M⁺⁺), 107 (20), 105 (20), 104 (60), 87 (35), 57 (100), 41 (24). Anal. ber. für C₁₂H₂₂O₃S (246,37): C 58,50, H 9,00; gef.: C 58,12, H 8,92.

13b: $[\alpha]_{25}^{D5} = -66^{\circ}$ (c = 0.95, CHCl₃). IR (CHCl₃): 2970s, 1675s, 1365m, 1100s. ¹H-NMR (CDCl₃): 4,56 (s, H–C(2)); 4,43–4,06 (ABC, $J_{AB} = 5$, $J_{AC} = 1$, $J_{BC} = 7$, H–C(4), CH₂(5)); 1,48 (s, (CH₃)₃CS); 1,00 (s, (CH₃)₃C–C(2)). ¹³C-NMR (CDCl₃): 112,01; 80,51; 68,84; 47,36; 33,93; 29,78; 24,61. MS: 189 (25,2), 129 (57), 69 (73), 57 (100), 41 (52). Anal. ber. für C₁₂H₂₂O₃S (246,37): C 58,50, H 9,00; gef.: C 57,78, H 9,02.

 $(2R,4S)-2-(tert-Butyl)-(4-^2H)-1,3-dioxolan-4-carbonthiosäure-S-(tert-butyl)ester (14a). Zu einer auf -78° gekühlten Lsg. von 0,94 ml (6,63 mmol) (i-Pr)₂NH in 22 ml THF wurden 3,39 ml (5,35 mmol) BuLi getropft. Nach 30 min wurde eine Lsg. von 1,26 g (5,1 mmol) 13a in 8 ml THF (RT.) zugegeben. Nach 1 h wurden 4,03 ml (6,38 mmol) BuLi zugetropft und nach 15 min 1,66 ml (40,8 mmol) CH₃OD zugegeben. Nach 1 h wurden 4 ml AcOH/Et₂O 1:3 zugetropft. Die Lsg. wurde in 120 ml Et₂O gegossen und mit 80 ml halbges. NaHCO₃-Lsg. gewaschen. Die org. Phase wurde getrocknet (MgSO₄) und das Lsgm. abgedampft: 1,17 g rohes 14a (>95% ds). Chromatographie mit Et₂O/Pentan 1:50 ergab 1,00 g (80%) 14a als weisse Kristalle. Schmp. 28-30°. [<math>\alpha$]_D = -66°

 $(c = 1, CHCl_3)$. IR (CHCl_3): 2960*m*, 1665*s*, 1365*m*, 1100*s*. ¹H-NMR (CDCl_3): 4,76 (*s*, H–C(2)); 4,26; 3,83 (*AB*, $J_{AB} = 7,5, CH_2(5)$); 1,46 (*s* (CH₃)₃CS); 0,93 (*s*, (CH₃)₃C–C(2)). MS: 190 (26), 134 (17), 130 (47), 69 (76), 57 (100), 41 (43), 29 (20). Anal. ber. für C₁₂H₂₁DO₃S (247,37): C 58,26, H 8,96; gef.: C 58,10, H 9,08.

(2R,4S)-4-Allyl-2-(tert-butyl)-1,3-dioxolan-4-carbonthiosäure-S-(tert-butyl)ester (14b). Zu einer auf -78° gekühlten Lsg. von 1,16 g (4,71 mmol) 13a, 0,6 ml (7,06 mmol) Allylbromid und 5 ml HMPT in 25 ml THF wurde eine Lsg. von 5,18 mmol Li(i-Pr)₂N (-78°) in 15 ml THF getropft. Die Lsg. wurde 1 h bei -78° gerührt und über Nacht aufgewärmt. Die Lsg. wurde in 150 ml Et₂O gegossen und mit 80 ml halbges. NH₄Cl-Lsg. und 4× mit 80 ml H₂O gewaschen. Nach dem Trocknen (MgSO₄) wurde eingedampft: 1,12 g (83%) rohes 14b (94% ds). Chromatographie mit Et₂O/Pentan 1:50 ergab 0,85 g (62,8%) diastereoisomerenreines 14b als farblose Flüssigkeit. [α]_D = -11° (c = 0.9, CHCl₃). IR (CHCl₃): 2960s, 1660s, 1365m, 1100s, 970s. ¹H-NMR (CDCl₃): 6,06-5,58 (m, H-C(2')); 5,20-4,96 (m, CH₂(3')); 4,71 (s, H-C(2)); 3,96, 3,84 (AB, J_{AB} = 7,5, CH₂(5)); 2,80-2,28 (m, CH₂(1')); 1,43 (s, (CH₃)₃CS); 0,95 (s, (CH₃)₃C-C(2)). MS: 229 (5), 169 (100), 101 (43), 83 (24), 69 (84), 57 (51), 55 (35), 41 (42), 29 (21). Anal. ber. für C₁₅H₂₆O₃S (286,43): C 62,89, H 9,14; gef.: C 62,84, H 9,33.

(2R, 4R)-2-(tert-*Butyl*)-4-(1'-hydroxy-1'-methylethyl)-1,3-dioxolan-4-carbonthiosäure-S-(tert-butyl)ester (14d). Nach AAV 7 (Temp. bei der Zugabe des Elektrophils -100°) wurden nach 1 h Reaktion aus 1,25 g (5,08 mmol) 13a und 0,44 ml (6,1 mmol) Aceton 1,49 g (96%) rohes 14d erhalten (>95% ds). Chromatographie mit Et₂O/Pentan 1:25 ergab 1,19 g (77%) diastereoisomerenreines 14d als farblose Kristalle. Schmp. 35-37,5°. [α]_D = +57° (c = 1, CHCl₃). IR (CHCl₃): 2960m, 1650s (br.), 1365m, 1085s. ¹H-NMR (CDCl₃): 4,68 (s, H--C(2)); 4,36, 3,98 (AB, $J_{AB} = 9$, CH₂(5)); 2,93 (s, OH); 1,46 (s, (CH₃)₃CS); 1,26 (s, CH₃-C(1')); 1,23 (s, CH₃-C(1')); 1,00 (s, (CH₃)₃C-C(2)). MS: 189 (17), 187 (21), 129 (38), 101 (11), 87 (30), 69 (57), 59 (11), 57 (100), 55 (12), 43 (39), 41 (42), 29 (21). Anal. ber. für C₁₅H₂₈O₄S (304,45): C 59,17, H 9,27; gef.: C 59,39, H 9,33. NOE: Einstrahlung sowohl der *t*-Bu- als auch der (CH₃)₂C(OH)-Frequenz⁶³ liefert einen positiven NOE auf *dasselbe* diastereotope H-C(5), d. h. *beide* Substituenten sind *cis* zu diesem H-C(5) und damit auch *cis* zueinander.

(2R,4R)-2-(tert-Butyl)-4-(1'-hydroxybenzyl)-1,3-dioxolan-4-carbonthiosäure-S-(tert-butyl)ester (14f). Nach AAV 7 wurden nach 3 min Reaktion aus 1,17 g (4,75 mmol) 13a und 0,58 ml (5,7 mmol) Benzaldehyd 1,63 g (97%) rohes 14f erhalten (92% ds). Nach Chromatographie in Et₂O/Pentan 1:10 ergab eine Umkristallisierung aus Et₂O/Pentan 1,15 g (69%) diastereoisomerenreines 14f als farblose Kristalle. Schmp. 134–136°. [α]_D = -39,5° (c = 1, CHCl₃). IR (CHCl₃): 3600m, 3490 (br.), 2960s, 1640s, 1365s, 1095s. ¹H-NMR (CDCl₃): 7,48–7,28 (m, 5 arom. H); 5,05 (d, J = 4,5, H–C(1')); 4,25 (s, CH₂(5)); 4,00 (s, H–C(2)); 3,05 (d, J = 4,5, OH); 1,38 (s, (CH₃)₃CS); 0,93 (s, (CH₃)₃C-C(2)). MS: 189 (46), 133 (25), 129 (85), 69 (100), 57 (96), 41 (49), 29 (24). Anal. ber. für C₁₉H₂₈O₄S (352,49): C 64,74, H 8,00; gef.: C 64,80, H 8,03.

(2 R, 4 R)-2-(tert-Butyl)-4-(l'-hydroxy-3'-phenyl-2'-propenyl)-1,3-dioxolan-4-carbonthiosäure-S-(tert-butyl)-ester (14g). Nach AAV 7 wurden nach 30 min Reaktion aus 1,09 g (4,41 mmol) 13a und 0,66 ml (5,3 mmol) Zimtaldehyd 1,66 g (quant.) Rohprodukt erhalten (66% ds). Chromatographie mit Et₂O/Pentan 1:15 ergab 0,76 g (46%) 14g und 0,23 g (14%) eines Diastereoisomeren, beide als farblose Kristalle. 14g: Schmp. 81,5–83,5°. $[\alpha]_D = -42^\circ (c = 1, \text{CHCl}_3)$. IR (CHCl_3): 2960m, 1655m, 1365m, 1100s. ¹H-NMR (CDCl_3): 7,39–7,23 (m, 5 arom. H); 6,66, 6,26, 4,55 (ABX, $J_{AB} = 14, J_{AX} = 1, J_{BX} = 6, \text{H}-\text{C}(3'), \text{H}-\text{C}(2'), \text{H}-\text{C}(1')); 4,72 (s, \text{H}-\text{C}(2)); 4,24; 4,14 (AB, <math>J_{AB} = 9, \text{CH}_2(5))$; 2,55 (br., OH); 1,4 (s, (CH₃)₃CS); 1,02 (s, (CH₃)₃C-C(2)). MS: 378 (0,03, M^{++}), 321 (0,3), 261 (0,5), 246 (26), 190 (21), 160 (11), 133 (27), 115 (11), 104 (61), 87 (26), 69 (12), 57 (100), 55 (15), 41 (26), 29 (16). Anal. ber. für C₂₁H₃₀O₄S (378,53): C 66,63, H 7,98; gef: C 66,93, H 8,23. Nebendiastereoisomer: Schmp. 97–99°. $[\alpha]_D = +34^\circ (c = 1, \text{CHCl}_3)$: 18 (CHCl₃): 2960m, 1650m, 1365m, 1100s. ¹H-NMR (CDCl₃): 7,38–7,22 (m, 5 arom. H); 6,68 (dd, J = 16, 2, H-C(3')); 6,28 (dd, J = 16, 5, H-C(2')); 4,74 (s, H-C(2)); 4,39 (ddd, J = 9, 5, 2, H-C(1')); 4,35 (d, J = 9, H-C(5)); 2,91 (d, J = 9, OH); 1,42 (s, (CH₃)₃CS); 1,00 (s, (CH₃)₃C-C(2)). MS: 246 (12), 190 (13), 133 (17), 131 (12), 104 (49), 87 (23), 69 (16), 57 (100), 55 (14), 41 (32), 29 (17). Anal. ber. für C₂₁H₃₀O₄S (378,53): C 66,63, H 7,98; gef.: C 66,97, H 8,25.

(2 R, 4 R)-2-(tert-Butyl)-4-(1'-hydroxy-1'-methylbenzyl)-1,3-dioxolan-4-carbonthiosäure-S-(tert-butyl)ester (14h). Nach AAV 7 (Temp. bei der Zugabe von Acetophenon –100°) wurden nach 1 h Reaktion aus 1,1 g (4,46 mmol) 13a und 0,62 ml (5,35 mmol) Acetophenon 1,6 g (98%) rohes 14h erhalten (89% ds). Chromatographie mit Et₂O/Pentan 1:25 ergab 1,03 g (63%) diastereoisomerenreines 14h als weisse Kristalle. Schmp. 100–102° [α]_D = -87° (c = 1,1, CHCl₃). IR (CHCl₃): 2960m, 1635s, 1365m, 1100s. ¹H-NMR (CDCl₃): 7,68–7,23 (m, 5 arom. H); 4,16, 4,00 (AB, $J_{AB} = 9$, CH₂(5)); 4,01 (s, H–C(2)); 3,38 (s, OH); 1,7 (s, CH₃); 1,46 (s, (CH₃)₃CS); 0,86 (s, (CH₃)₃C–C(2)). MS: 246 (21), 190 (22), 163 (10), 121 (20), 105 (27), 104 (79), 87 (33), 77 (17), 69 (22), 57 (100), 43 (60), 41 (27), 29 (14). Anal. ber. für C₂₀H₃₀O₄S (366,52): C 65,54, H 8,25; gef.: C 65,39, H 8,34.

⁶³) Es wurde in die Mitte zwischen den beiden CH₃-Frequenzen eingestrahlt.

(S)-2,3-Dihydroxy- $(2-^2H)$ propionsäure $(=(2-^2H)G$ lycerinsäure; **12a**). Einer auf 0° gekühlten Lsg. von 942 mg (3,79 mmol) **14a** in 20 ml MeOH/H₂O 9:1 wurde eine Lsg. von 8,6 mmol KOH in 16 ml MeOH/H₂O 15:1 während 30 min zugegeben. Das Gemisch wurde über Nacht bei RT. gerührt. Dann wurde es in 30 ml ges. NaCl-Lsg. und 100 ml CH₂Cl₂ aufgenommen, auf 0° abgekühlt und mit 1N HCl auf pH 2 eingestellt. Die H₂O-Phase wurde noch 2× mit 100 ml CH₂Cl₂ ausgeschüttelt. Die org. Phase wurde getrocknet (MgSO₄) und das Lsgm. abgedampft. Die so erhaltene Säure wurde mit 15 ml 6N HCl 10 min unter Rückfluss gekocht. Dann wurde die H₂O-Phase mit 10 ml CH₂Cl₂ gewaschen und bei 30° eingedampft. Das so erhaltene **12a** (487,6 mg, 74,3%) hat einen für die Bestimmung des opt. Reinheit zu niedrigen Drehwert. Deshalb wurde **12a** zum 2,2-Dimethyl(4-²H)-1,3-dioxolan-4-carbonsäure-methylester von $[\alpha]_D = -16,2°$ (c = 3,5, CHCl₃) umgesetzt ([54] für die nicht deuterierte Verbindung: $[\alpha]_D = -17,3°$ (c = 3,3, CHCl₃)).

(2 R)-2,3-Dihydroxy-2-(1'-hydroxy-1'-methylethyl)propionsäure (12b). Einer auf 0° gekühlten Lsg. von 313,9 mg (1,03 mmol) 14d in 20 ml MeOH/H₂O 2:1 wurde eine Lsg. von 144 mg KOH in 8 ml MeOH/H₂O 1:1 innert 30 min zugegeben. Das Gemisch wurde 24 h bei RT. gerührt, dann in 30 ml ges. NaCl-Lsg. und 100 ml CH₂Cl₂ aufgenommen, auf 0° abgekühlt und mit 1N HCl auf pH 2 eingestellt. Die H₂O-Phase wurde noch 2× mit 100 ml CH₂Cl₂ ausgeschüttelt. Die org. Phase wurde getrocknet (MgSO₄) und das Lsgm. abgedampft. Aus dem so erhaltenen Öl (Gemisch von Säure und Methylester) wurden nach Chromatographie mit Et₂O/Pentan 1:2 103,3 mg (43%) Säure isoliert, die mit 10 ml 6N HCl 10 min unter Rückfluss gekocht wurden. Dann wurde die H₂O-Phase mit 10 ml CH₂Cl₂ gewaschen und bei 30° eingedampft: 48,6 mg (29%) 12b. [α]_D = +3,24° (c = 1, H₂O). ¹H-NMR (CD₃OD, CHD₂OD = 3,35): 5,48 (OH); 4,06, 3,90 (*AB*, J_{AB} = 10,5, CH₂O); 1,3 (s, CH₃); 1,26 (s, CH₃).

LITERATURVERZEICHNIS

- [1] R. Naef, D. Seebach, Angew. Chem. 1981, 93, 1113; ibid. Int. Ed. 1981, 20, 1030.
- [2] D. Seebach, J. D. Aebi, Tetrahedron Lett. 1983, 24, 3311.
- [3] D. Seebach, J. D. Aebi, Tetrahedron Lett. 1984, 25, 2545.
- [4] D. Seebach, M. Coquoz, Chimia 1985, 39, 20.
- [5] D. Seebach, R. Imwinkelried, Th. Weber, in 'Modern Synthetic Methods 1986', Ed. R. Scheffold, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1986, S. 125-260.
- [6] D. Seebach, S. Roggo, J. Zimmermann, in 'Stereochemistry of Organic and Bioorganic Transformations', Workshop Conferences *Hoechst*, Vol. 17, Eds. W. Bartmann and K. B. Sharpless, VCH Verlagsgesellschaft mbH, Weinheim, 1986, S.85-126.
- [7] M. Eyer, D. Seebach, J. Am. Chem. Soc. 1985, 107, 3601.
- [8] A. Eschenmoser, A. Frey, Helv. Chim. Acta 1952, 35, 1660.
- [9] C.A. Grob, P.W. Schiess, Angew. Chem. 1967, 79, 1; ibid. Int. Ed. 1967, 6, 1.
- [10] J. E. Baldwin, J. Chem. Soc., Chem. Commun. 1976, 734; J. E. Baldwin, J. Cutting, W. Dupont, L. Kruse, L. Silberman, R. C. Thomas, *ibid.* 1976, 736.
- J. Mulzer, M. Zippel, Angew. Chem. 1981, 93, 405; J. Mulzer, T. Kerkmann, J. Am. Chem. Soc. 1980, 102, 3620; J. Mulzer, T. Kerkmann, Angew. Chem. 1980, 92, 470; ibid. Int. Ed. 1980, 19, 466.
- [12] D. Seebach, H.-O. Kalinowski, Nachr. Chem. Tech. 1976, 24, 415.
- [13] D. Seebach, E. Hungerbühler, in 'Modern Synthetic Methods 1980', Ed. R. Scheffold, Salle + Sauerländer-Verlag, Frankfurt und Aarau, 1980, S.91.
- [14] S.F. Martin, Tetrahedron 1980, 36, 419.
- [15] D. Seebach, in 'The Robert A. Welch Foundation Conferences on Chemical Research. XXVII. Stereospecificity in Chemistry and Biochemistry', Houston, Texas, Nov. 7–9, 1983, published in the proceedings of the above conference, Welch Foundation, Houston, 1984.
- [16] W. N. Setzer, P. von Ragué Schleyer, Adv. Organomet. Chem. 1985, 24, 353.
- [17] G. Calderari, D. Seebach, Helv. Chim. Acta 1985, 68, 1592.
- [18] M. Schmidt, unveröffentlichte Versuche, Universität Giessen, 1975.
- [19] Chimia 1985, 39, 147; Nachr. Chem. Tech. 1985, 33, 396; Chem. in Britain 1985, 21, 632.
- [20] T. Mukhopadhyay, D. Seebach, Helv. Chim. Acta 1982, 65, 385.
- [21] D. Seebach, V. Prelog, Angew. Chem. 1982, 94, 696; ibid. Int. Ed. 1982, 21, 654.

- [22] W. Heller. Ch. Tamm. Helv. Chim. Acta 1974, 57, 1766.
- [23] R.A. Moss, T.B.K. Lee, J. Chem. Soc., Perkin Trans. 1 1973, 2778.
- [24] D. F. Elliott, J. Chem. Soc. 1949, 589.
- [25] J. Attenburrow, D. F. Elliott, G. F. Penny, J. Chem. Soc. 1948, 310.
- [26] W. Adam, V. Ehrig, Synthesis 1976, 817.
- [27] D. Seebach, Th. Weber, Helv. Chim. Acta 1984, 67, 1650.
- [28] B. Weidmann, D. Seebach, Angew. Chem. 1983, 95, 12; ibid. Int. Ed. 1983, 22, 31.
- [29] U. Schöllkopf, Topics Curr. Chem. 1983, 109, 65.
- [30] U. Schöllkopf, J. Nozulal, M. Grauert, Synthesis 1985, 55.
- [31] M. Shibasaki, Y. Ishida, N. Okabe, Tetrahedron Lett. 1985, 26, 2217.
- [32] S. Yamada, K. Achiwa, Chem. Pharm. Bull. 1964, 12, 1525.
- [33] A. Fischli, in 'Modern Synthetic Methods 1980', Ed. R. Scheffold, Salle + Sauerländer-Verlag, Frankfurt und Aarau, 1980, S. 269.
- [34] J.D. Aebi, M.A. Sutter, D. Wasmuth, D. Seebach, Liebigs Ann. Chem. 1983, 2114; Berichtigung: ibid. 1984, 107.
- [35] M.F. Züger, F. Giovannini, D. Seebach, Angew. Chem. 1983, 95, 1024; ibid. int. Ed. 1983, 22, 1012; J. Ehrler,
 F. Giovannini, B. Lamatsch, D. Seebach, Chimia 1986, 40, 172.
- [36] Ph. Renaud, M. Hürzeler, D. Seebach, Helv. Chim. Acta 1987, 70, 292.
- [37] P.J. Maurer, H. Takahata, H. Rapoport, J. Am. Chem. Soc. 1984, 106, 1095.
- [38] D. Seebach, J.D. Aebi, R. Naef, Th. Weber, Helv. Chim. Acta 1985, 68, 144.
- [39] D. Seebach, A. Fadel, Helv. Chim. Acta 1985, 68, 1243.
- [40] D. Seebach, R. Naef, G. Calderari, Tetrahedron 1984, 40, 1313.
- [41] D. Seebach, J. Zimmermann, Helv. Chim. Acta 1986, 69, 1147.
- [42] D. Seebach, D. D. Miller, St. Müller, Th. Weber, Helv. Chim. Acta 1985, 68, 949.
- [43] St. Müller, ETH Zürich, bisher unveröffentlichte Versuche, 1986.
- [44] A.K. Boss, M.S. Manhas, J.E. Vincent, K. Gala, J.F. Fernandez, J. Org. Chem. 1982, 47, 4075.
- [45] L. Szilágyi, Z. Györgydeák, J. Am. Chem. Soc. 1979, 101, 427.
- [46] S. Hanessian, T. H. Haskell, Tetrahedron Lett. 1964, 2451.
- [47] E.H. Flynn, J.W. Hinman, E.L. Caron, D.O. Woolf, Jr., J. Am. Chem. Soc. 1953, 75, 5867.
- [48] N. Takamura, S. Terashima, K. Achiwa, S. Yamada, Chem. Pharm. Bull. 1967, 15, 1776.
- [49] E. M. Wilson, E. E. Snell, J. Biol. Chem. 1962, 237, 3180.
- [50] J. P. Greenstein, M. Winitz, in 'Chemistry of the Amino Acids', J. Wiley & Sons, New York, 1961, Vol. I, S. 743, Vol. III, S. 2572.
- [51] U. Schöllkopf, U. Groth, H. Hartwig, Liebigs Ann. Chem. 1981, 2407.
- [52] C.M. Lok, J.P. Ward, D.A. van Dorp, Chem. Phys. Lipids 1976, 16, 115.
- [53] G. Hirth, W. Walther, Helv. Chim. Acta 1985, 68, 1863.
- [54] R. Dumont, H. Pfander, Helv. Chim. Acta 1983, 66, 814.
- [55] G. Stucky, unveröffentlichte Versuche, ETH Zürich, 1986–1987.
- [56] R.P. Hatch, S.M. Weinreb, J. Org. Chem. 1977, 42, 3960.
- [57] P.A. Stadler, Helv. Chim. Acta 1978, 61, 1675.
- [58] F. Lynen, Fed. Proc. 1953, 12, 683; G. E. Wilson, Tetrahedron Lett. 1967, 8, 2007.
- [59] J. Wemple, Tetrahedron Lett. 1975, 3255.
- [60] P. Knochel, D. Seebach, Nouv. J. Chim. 1981, 5, 75.
- [61] D. Seebach, P. Knochel, Helv. Chim. Acta 1984, 67, 261.
- [62] D. Seebach, R. Häner, Chem. Lett. 1987, 49 und bisher unveröffentlichte Versuche von R. Häner und B. Olano, ETH Zürich, 1986.
- [63] R. Häner, Th. Maetzke, D. Seebach, Helv. Chim. Acta 1986, 69, 1655.
- [64] J. Wemple, Tetrahedron Lett. 1977, 1103.
- [65] H. Gerlach, P. Künzler, Helv. Chim. Acta 1978, 61, 2503.
- [66] T. Mukaiyama, K. Inomata, M. Muraki, J. Am. Chem. Soc. 1973, 95, 967; K. Inomata, M. Muraki, T. Mukaiyama, Bull. Chem. Soc. Jpn. 1973, 46, 1807.
- [67] T. Mukaiyama, T. Inoue, Chem. Lett. 1976, 559; T. Inoue, T. Uchimaru, T. Mukaiyama, ibid. 1977, 153.
- [68] M. Hirama, S. Masamune, Tetrahedron Lett. 1979, 2225.
- [69] J. Voss, in 'The Chemistry of Functional Groups. The Chemistry of Acid Derivatives', supp. P., Ed. S. Patai, Wiley-Interscience, J. Wiley & Sons, New York, 1979, S. 1021; J. Voss, in 'Methoden der organischen Chemie, Carbonsäuren und Carbonsäure-Derivate', Teil 1, Houben-Weyl, G. Thieme Verlag, Stuttgart, 1985, S. 832.

- [70] M. Kinoshita, M. Nakata, Jpn. J. Syn. Org. Chem. 1986, 44, 206; I. Paterson, M. M. Manauri, Tetrahedron 1985, 41, 3569.
- [71] C. H. Heathcock, J. P. Hagen, E. T. Jarvi, M. C. Pirrung, S. D. Young, J. Am. Chem. Soc. 1981, 103, 4972.
- [72] A.S. Cieplak, J. Am. Chem. Soc. 1985, 107, 271 und dort zit. Lit.
- [73] Th. Weber, R. Aeschimann, Th. Maetzke, D. Seebach, Helv. Chim. Acta 1986, 69, 1365.
- [74] D. Seebach, M. Pohmakotr, Tetrahedron 1981, 37, 4047.
- [75] D.A. Evans, in 'Asymmetric Synthesis', Vol. 3, Ed. J.D. Morrison, Academic Press, New York, 1984, S.2.
- [76] W. Ladner, Angew. Chem. 1982, 94, 459; ibid. Int. Ed. 1982, 21, 449.
- [77] R. W. Hoffmann, W. Ladner, Chem. Ber. 1983, 116, 1631.
- [78] W. Ladner, Chem. Ber. 1983, 116, 3413.
- [79] K. Shiosaki, H. Rapoport, J. Org. Chem. 1985, 50, 1229.
- [80] U. Schöllkopf, H.-J. Neubauer, M. Hauptreif, Angew. Chem. 1985, 97, 1065; ibid. Int. Ed. 1985, 24, 1066.
- [81] D. Seebach, R. Naef, Helv. Chim. Acta 1981, 64, 2704; D. Seebach, M. Boes, R. Naef, W. B. Schweizer, J. Am. Chem. Soc. 1983, 105, 5390.
- [82] Th. Weber, D. Seebach, Helv. Chim. Acta 1985, 68, 155.
- [83] A.I. Meyers, M. Harre, R. Garland, J. Am. Chem. Soc. 1984, 106, 1146; A.I. Meyers, K. Th. Wanner, Tetrahedron Lett. 1985, 26, 2047; A.I. Meyers, R. Hanreich, K. Th. Wanner, J. Am. Chem. Soc. 1985, 107, 7776.
- [84] D. Seebach, R. Amstutz, Th. Laube, W.B. Schweizer, J. D. Dunitz, J. Am. Chem. Soc. 1985, 107, 5403.
- [85] W. Bauer, Th. Laube, D. Seebach, Chem. Ber. 1985, 118, 764.
- [86] Th. Laube, J. D. Dunitz, D. Seebach, Helv. Chim. Acta 1985, 68, 1373.
- [87] D. Seebach, R. Amstutz, J. D. Dunitz, Helv. Chim. Acta 1981, 64, 2622.
- [88] D. Seebach, W. Bauer, J. Hansen, Th. Laube, W. B. Schweizer, J. D. Dunitz, J. Chem. Soc., Chem. Commun. 1984, 853.
- [89] P. Strazewski, Ch. Tamm, Helv. Chim. Acta 1986, 69, 1041.
- [90] P. G. Williard, G. B. Carpenter, J. Am. Chem. Soc. 1985, 107, 3345; P. G. Williard, G. B. Carpenter, ibid. 1986, 108, 462.
- [91] W.H. Saunders, Acc. Chem. Res. 1976, 9, 19; F.G. Bordwell, ibid. 1972, 5, 374; C.J.M. Styrling, ibid. 1979, 12, 198.
- [92] D.F. Elliott, Biochem. J. 1949, 45, 429.
- [93] A.J. Manusco, S.L. Huang, D. Swern, J. Org. Chem. 1978, 43, 2480.
- [94] C.E. Meyer, W.C. Rose, J. Biol. Chem. 1936, 115, 721.
- [95] C.G. Baker, S.-C.J. Fu, S.M. Birnbaum, H.A. Sober, J.P. Greenstein, J. Am. Chem. Soc. 1952, 74, 4701.
- [96] S. Terashima, K. Achiwa, S. Yamada, Chem. Pharm. Bull. 1965, 13, 1399.
- [97] L.I. Krimen, Org. Synth. 1970, 50, 1.